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Abstract

Thermo-physiological properties of textiles play a very crucial role in providing thermal
equilibrium to human beings in changing ambient conditions and activity level and

in turn dictate the overall wearer comfort. A number of prediction tools like mechanis-
tic, statistical and stochastic (artificial neural network) models are finding application

in textiles for reasonable prediction of various aspects of textiles before the actual
commencement of fabric production and testing. In this study, thermo-physiological
properties of polyester—cotton plated fabrics were predicted by two approaches: artifi-
cial neural network and response surface equations. A multilayered back propagation
artificial neural network was developed with four input nodes corresponding to four
selected input parameters: back layer yarn linear density, filament fineness, total yarn
linear density and loop length and one output node corresponding to the predicted
thermo-physiological property. Four individual networks working in tandem with com-
mon set of input parameters and each giving an individual output were developed
such that the outputs of four networks were thermal resistance, thermal absorptivity,
air permeability and moisture vapour transmission rate respectively. Network architec-
ture gave good prediction performance with low values of mean absolute percentage
error and high coefficient of determination. Response surface equations were devel-
oped to predict the thermo-physiological properties and good agreement between
experimental and predicted values for all the properties was found with coefficient of
determination over 0.9. Artificial neural network predicted the thermal resistance and
air permeability of plated fabrics with good accuracy. However, the response surface
equations served better prediction tool for thermal absorptivity and moisture vapour
transmission rate prediction.

Keywords: Mean absolute percentage error, Neural network, Plated knitted fabrics,
Response surface, Thermo-physiological properties

Introduction

Prediction of functional and performance properties of textiles before the actual com-
mencement of fabric production and testing can serve as an effective tool in character-
ization and designing of fabrics for any desired application. The thermo-physiological
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properties of textile materials can be predicted by (a) mechanistic models (b) statistical
models (c) artificial neural network. Artificial neural network is a stochastic (based on
probabilistic method) and heuristic model (action based on prior experience) (Zurada
1997; Bhattacharjee 2007; Kothari and Bhattacharjee 2011). It simulates the function-
ing of a biological neuron and every component of the network is analogous to the
actual constituents or operations of a biological neuron (Zurada 1997; Majumdar 2011a,
2011b). Network architecture of the neural network determines its prediction efficacy
and is composed of several structural parameters as shown in Fig. 1. Number of hid-
den layers, number of nodes connected with bias in each of the hidden layers, summa-
tion and the transfer function in hidden and output layers are the important structural
parameters of neural network (Yadav and Kothari 2004). Data set presented to neural
network is characterized into training and testing set (Majumdar 2011a, 2011b; Yadav
and Kothari 2004). Adjusted weights and biases of the network are determined from
the training set and the test set is used for calibration to prevent overtraining networks.
Optimization of network performance can be ensured during the training process which
involves fine tuning the values of weights and biases of the network. Back propagation
algorithm is commonly used algorithm for the training of neural network. Back prop-
agation algorithm is used to update network weights and biases in direction in which
performance function (mse) decreases most rapidly (Demuth and Beale 2004; Bhat-
tacharjee and Kothari 2007). One iteration of the algorithm can be expressed by follow-
ing equation:

X1 = Xk — Ok (1)

where x;, is the vector of current weight and biases, ay, the learning rate and g, the cur-
rent gradient.

Attempts have been made to predict the physical, mechanical and comfort proper-
ties of woven, non-woven and knitted fabrics using various prediction tools. Most of the
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Fig. 1 Structural parameters of neural network architecture
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work is focused on modelling the fibre-yarn relationship, yarn tenacity, fault detection,
compression, elastic properties and hand values of woven, nonwoven and knitted fab-
rics. Although some studies have discussed prediction of thermal properties i.e. thermal
resistance, thermal conductivity of woven and knitted fabrics, none of the studies give a
detailed review of the modelling of comfort properties particularly thermal absorptiv-
ity and moisture vapour transmission rate of plated knitted fabrics. Moreover, very few
studies are devoted to the prediction of thermo-physiological properties: thermal prop-
erties, air permeability and moisture vapour transmission rate collectively. An attempt
is therefore made to model the thermo-physiological properties of plated knitted fab-
rics from constructional parameters like back yarn linear density, filament fineness,
loop length and total yarn linear density using statistical and artificial neural network
approach and comparison of the developed models in terms of their prediction perfor-
mance and robustness.

Methods

Materials

A total of 50 PET/C plated knitted fabrics were used for the study. Out of the 50 samples,
40 samples (80 %) were presented as training set to neural network and remaining 10
samples (20 %) were used as the testing set. The prediction performance and robustness
of artificial neural network depends on selection of training data owing to basic nature
of neural network to learn from training through back propagation. Larger the training
data set, better the training and prediction efficacy of neural network. Accordingly, fifty
single jersey plated fabrics with varying combinations of yarn and fabric variables were
chosen to formulate a neural network. Fabric specifications of training and test set are
shown in Tables 1 and 2.

Thermal properties

Fabric samples were tested for their thermal properties: thermal resistance and thermal
absorptivity on Alambeta (Sensora, Czech Republic). In this instrument fabric is kept
between hot and cold plate. The heat transfer from hot plate to cold plate through fabric
is determined by the instrument.

Air permeability
Test fabrics were evaluated for their air permeability on FX 3300 air permeability tester
(TEXTEST AG, Switzerland) at a pressure of 98 Pa according to ASTM D 737.

Moisture vapour transmission rate

Moisture vapour transmission rate of the fabrics was tested on moisture vapour trans-
mission cell (MVTR cell) (Grace, Cryov ac division). Amount of water vapour that
transmits through 100 inch? fabric area during period of 24 h can be determined by
this instrument rapidly. Difference in humidity maintained on two sides of test fabric
positioned in MVTR cell enables moisture vapour transmission rate to be determined
according to following equation:
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Table 1 Training set specifications

Sample Back layer yarn Filament fineness Total yarn linear Loop length
code linear density (decitex) density (tex) (mm)
PETC1 1.1 2.31 40.63 5.0
PETC2 1.1 2.31 40.63 6.0
PETC4 1.1 2.31 40.63 6.6
PETCS 1.1 2.31 40.63 7.1
PETC7 1.1 154 40.63 6.0
PETC8 1.1 154 40.63 6.4
PETC9 1.1 1.54 40.63 6.6
PETC11 1.1 1.10 40.63 5.0
PETC12 11.1 1.10 40.63 6.0
PETC13 1.1 1.10 40.63 6.4
PETC14 1.1 1.10 40.63 6.6
PETC16 1.1 231 35.70 60
PETC17 1.1 2.31 35.70 6.4
PETC18 1.1 2.31 35.70 7.1
PETC19 1.1 154 35.70 6.0
PETC20 1.1 154 35.70 6.4
PETC21 1.1 154 35.70 7.1
PETC22 1.1 1.10 35.70 5.0
PETC23 1.1 1.10 35.70 6.0
PETC24 1.1 1.10 35.70 6.4
PETC25 1.1 1.10 35.70 7.1
PETC26 16.7 231 46.20 50
PETC28 16.7 2.31 46.20 6.4
PETC29 16.7 231 46.20 6.6
PETC31 26.1 3.62 55.63 5.0
PETC33 26.1 3.62 55.63 6.4
PETC34 26.1 362 55.63 6.6
PETC36 26.1 3.62 65.46 5.0
PETC37 26.1 362 65.46 6.0
PETC38 26.1 3.62 65.46 6.4
PETC39 26.1 3.62 65.46 6.6
PETC40 26.1 362 65.46 7.1
PETC42 333 4.62 72.70 6.0
PETC43 333 462 7270 6.4
PETC44 333 4.62 72.70 6.6
PETC46 26.1 362 85.15 5.0
PETC47 26.1 362 85.15 6.0
PETC48 26.1 3.62 85.15 6.4
PETC49 26.1 3.62 85.15 6.6
PETC50 26.1 3.62 85.15 7.1
_7 1440
MVIR = (269 x 1077) (ARH % x t) H )

where ARH %, is the average difference in successive % RH values, t, the time interval in
minutes and H, the gms water per m? of air at cell temperature (Varshney et al. 2010).
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Development of artificial neural network (ANN)

Multilayered back propagation feed forward neural network was used to predict the
thermo-physiological properties of plated fabrics. All the programming was done using
MATLAB software neural network toolbox. Sigmoid transfer function ‘tansig’ was used
for input and hidden layers and a linear function ‘purelin’ was used for the output layer.
Normalization was applied to both input and target vectors. ‘Mapminmax’ function was
used to normalize inputs and targets to fall in the range of —1 to 1. Network was trained
using ‘trainlm’ function which is Levenberg—Marquardt algorithm. ‘trainlm’ is consid-
ered the fastest method for training moderate sized feed forward neural networks and is
most suitable for non-linear regression.

Network architecture consisted of four sequential networks (NN1, NN2, NN3 and
NN4) working in tandem with input layer of 4 nodes corresponding to four input param-
eters: back layer yarn linear density, filament fineness, total yarn linear density and loop
length and an output layer of 1 node corresponding to the property to be predicted. Thus
the four different networks fed with common set of inputs gave individual single outputs
i.e. output of NN1 was thermal resistance, output of NN2 was thermal absorptivity, air
permeability and moisture vapour transmission rates were the outputs of NN3 and NN4
respectively. Three layered network with one input layer, one hidden layer and one out-
put layer was used for the four networks. The number of neurons was fixed after many
trials to 7, 4, 7 and 7 for NN1, NN2, NN3 and NN4 respectively. Structural elements of
network architectures are presented in Table 3.

Number of epochs required for the networks to converge was 10, 32, 18 and 16 for the
four networks respectively. Figure 2 shows the network architecture of the developed
model with the weight and bias connections between different layers of network.

Developed network was analyzed for the prediction performance in terms of mean
absolute percentage error and coeflicient of determination. Over fitting is the most com-
mon problem with ANN when network memorizes the training examples but fails to

Table 3 Structural elements of individual network architectures

Individual networks

NN1 NN2 NN3 NN4

Output parameters ~ Thermal resistance Thermal absorptivity — Air permeability Moisture vapour

transmission rate
Input parameters Back layer yarn linear density, filament fineness, total yarn linear density, loop length
Number of nodesin 4 4 4 4
input layer
Number of hidden 1 1 1 1
layers

Number of nodesin 7 4 7 7
hidden layers

Transfer function
between input and
hidden layer

Transfer function
between hidden
and output layer

Training rule

Tan sigmoid
(tansig)

Linear (purelin)

Levenberg-Mar-
quardt algorithm

Tan sigmoid
(tansig)

Linear (purelin)

Levenberg-Mar-
quardt algorithm

Tan sigmoid
(tansig)

Linear (purelin)

Levenberg-Mar-
quardt algorithm

Tan sigmoid
(tansig)

Linear (purelin)

Levenberg-Mar-
quardt algorithm
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Fig. 2 Weight and bias connections between different layers of neural network with thermal resistance as
output (similar networks were formed for thermal absorptivity, air permeability and moisture vapour trans-
mission rate)

generalize new unseen test data set. Over fitting was avoided by regularization. Perfor-
mance function mse was modified to mse,,. Equations (3) and (4) show the calculations
involved in determining mse and mse,, respectively. Mean square weight used to deter-
mine mse,., was obtained from Eq. (5) and mean absolute percentage error (MAPE) was
calculated using [Eq. (6)].

N

1
mse =3 [Ta = Pal? 3)

a=1

where mse is the mean square error, T, is the ath target (experimental) value, P, is the
ath predicted (network calculated) value and n is the number of observations.

msereg = ymse + (1 — y)msw 4)
1 XN

msw = > w? )
a=1

where mse,, is the modified performance function for regularization, msw is the mean
square weight and y is the performance ratio.

N
1 | Ty — Py
MAPE = — _— 1
NZ( T, ) x 100 (6)

a=1

where MAPE is the mean absolute percentage error, T, is the ath target (experimen-
tal) value, P, is the ath predicted (network calculated) value and N is number of input
parameters.
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Response surface fitting regression analysis

Statistical modelling was accomplished by response surface fitting regression analysis
with a polynomial to check the linear, squared and interaction effects of the yarn and
fabric input parameters together on thermo-physiological properties of plated fabrics.
The response surface for quadratic polynomials can be expressed by following equation:

k k—1
yzﬁo‘f‘Zﬁaxu‘f'Z
b=

a=1 1

k k
> Boatp%a + D Baa % (7)
a=b+1

a=1

where v, is the response function, x, the input parameter, k, the number of variables and
B, coefficient. The first term on right hand side comprises of linear coefficients, the sec-
ond term comprises of interaction coefficients and the third term comprises of square

coefficients.

Four input parameters were used for the development of response surface regres-

sion analysis. Response surface for four input parameters can be expressed by following

equation:

¥y = Bo+ B1x1 + Boxa + B3x3 + Paxa + Psx1x2 + Pex1x3 + Prx1xa + Pexoxz + Poxaxs

+ Broxsxa + Puixs + Proxs + Pi3x3 + Praxg

®)

The coefficients for the equations were generated using response surface tool ‘rstool’

in MATLAB statistical toolbox. Table 4 presents the linear, interaction and square coef-

ficients when four input parameters i.e. back layer yarn linear density, filament fineness,

total yarn linear density and loop length were considered.

Table 4 Coefficients for response surface equations for four input parameters

Coefficients  Parameters Thermal Thermal Air perme- Moisture
of x1,X2,X3X4 resist- absorptivity  ability (cm3®/  vapour
ance x 1073 (Ws"?/m?K)  cm?/s) transmis-
(Km%/W) sion rate (g/
m?/24 h)

Linearterms (3, constant 3393 —2792 22167 52.81

B, X 86.42 608.91 1499.1 84.35

B, X5 —609.08 —4400.8 —10,841 —602.47

Bs X3 1.01 258 522 —1.56

B X4 —12 22.31 70.28 3.21
Interaction Bs X1X5 —53.93 401.82 979.64 55.20

terms Bs XiX3 0.13 0.625 0.296 0.092

B8, XiXe —0.028 0.158 0.825 0.058

Bs XoX; —1.06 —0.857 032 —0.22

B XX —033 -177 —-1.07 —0.028

Bio X3X4 0.0043 —0.0192 —047 —0.023
Squareterms B, X 741 —56.32 —136.23 —7.75

B, X 6.85 -3.12 —698 —031

Bis X —0.00016 —0.095 —0.096 235e7*

Bia X2 1.14 —-2.51 8.60 033

x1is back layer yarn linear density (tex), x, is filament fineness (decitex), x; is total yarn linear density (tex) and x, is loop

length (mm)
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Table 5 Individual errors between experimental and predicted values of thermal resist-
ance & thermal absorptivity by ANN

Sample Experimen- Predicted Error % Experimen-  Predicted Error %
code talthermal  thermal (M) *100 talthermal  thermal (M) *100
. . E . - E
resist- resist- absorptivity  absorptivity
ance x 10~®  ance x 1073 (Ws"2/m2K)  (Ws'?/m2K)
(Km?/W) (Km%/W)
PETC3 20.50 21.135 3.10 84.0 83.74 0.31
PETC6 20.50 21.200 342 94.1 85.18 948
PETC10 24.50 26.593 854 70.1 7222 299
PETC15 31.20 32455 4.02 68.5 72.10 5.25
PETC27 22.80 22417 1.68 925 8748 543
PETC30 25.50 26.395 351 742 7336 1.14
PETC32 23.87 23.345 220 1119 97.25 13.11
PETC35 29.22 26.356 9.80 8132 87.37 744
PETC41 31.10 33.847 8.83 149.5 141.90 512
PETC45 35.06 36.219 3.30 131.0 13240 1.07
Mean 4.84 5.13
absolute
percentage

error

Results and discussion

Prediction performance of the developed network architecture i.e. individual networks
(NN1, NN2, NN3 & NN4) was analyzed in terms of mean absolute percentage error
(MAPE) and coefficient of determination (R?). Individual errors between experimental
and ANN predicted values and mean absolute percentage error of thermal resistance,
thermal absorptivity, air permeability and moisture vapour transmission rate were calcu-
lated and are summarized in Tables 5 and 6. Table 7 shows the performance parameters
of network architecture. Mean absolute percentage error for thermal resistance, thermal
absorptivity, air permeability and moisture vapour transmission rate were 2.03, 3.1, 3.15
and 2.58 % for training data set and 4.59, 5.13, 7.40 and 7.25 % respectively for test data
set for individual networks to predict four properties individually.

Individual error % and mean absolute percentage errors for all four properties under
consideration were quite low suggesting that ANN could predict the thermo-physiologi-
cal properties in close agreement with experimental values.

Individual networks (NN1, NN2, NN3 & NN4) used just one hidden layer and 10,
32, 18 and 16 number of epochs respectively to reduce performance function and took
0.93 s to converge (Table 7).

Prediction performance
Individual networks giving four single outputs was observed to predict the thermo-
physiological properties with good coefficient of determination of 0.92, 0.95, 0.93 and
0.95 for thermal resistance, thermal absorptivity, air permeability and moisture vapour
transmission rate respectively as shown in Table 7.

The predicted thermo-physiological properties of plated fabrics by ANN were in close
agreement with target outputs (experimental values) which proves the robustness and
generalization ability of the network. However, the mean absolute percentage error in
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Table 7 Performance parameters of network architectures

Individual networks

Page 11 of 16

Network 1 Network 2 Network 3 Network 4
Thermal Thermal Air permeability Moisture vapour
resistance x 1073 absorptivity (cm3/cm?/s) transmission rate
(Km?/W) (Ws"2/m?2K) (g/m3/24 h)
Network architecture 4-7-1 4-4-1 4-7-1 4-7-1
Epochs 10 32 18 16
Performance ratio 0.9 09 09 0.9
Average elapsed time(s) 1.5 0.5 1.25 0.45
Training set
Mean absolute per- 2.03 3.1 3.15 2.58
centage error
Minimum error % 0.22 0.025 0.02 0.05
Coefficient of 0.99 0.99 0.99 0.98
determination(r?d)
Testing set
Mean absolute per- 459 5.13 740 7.25
centage error
Minimum error % 1.68 0.31 1.55 0.60
Coefficient of determi-  0.92 0.95 0.93 0.95
nation (r9)

the prediction of air permeability and moisture vapour transmission rate of plated fabrics
were on slightly higher side. The input parameters selected for the network construction
namely back layer yarn linear density, filament fineness, loop length and total yarn lin-
ear density influence the fabrics bulk properties like thickness, fabric weight which are
the determinants of thermal properties. The selected input parameters were found to be
sufficient for prediction of thermal properties. However, air permeability depends on the
openness of the fabric structure or the free inter yarn spaces in the fabric and hence fabric
porosity. The exclusion of porosity as one of the input parameters might be the reason for
high mean absolute percentage error in prediction of air permeability. Moisture vapour
transmission rate through fabrics depend on free air spaces in the fabric for moisture dif-
fusion and moisture diffusivity of the fibres. Hydrophilic and hydrophobic nature of the
fibre can affect the moisture diffusion through textiles significantly. The inclusion of con-
stituent fibres as one of the input parameter to neural network may result in lowering the
error percentage in prediction of moisture vapour transmission rate.

Comparison of artificial neural network (ANN) and statistical model

Developed network architecture was compared with response surface fitting regression
analysis in terms of the robustness, generalization ability of the models which in turn
depends on the prediction performance parameters: mean absolute percentage error and
coefficient of determination. Statistical modelling was accomplished by response surface
fitting regression analysis with a polynomial to check the linear, squared and interaction
effects of the yarn and fabric input parameters together on thermo-physiological prop-
erties of plated fabrics. Table 8 shows the individual error percentage and mean absolute
percentage error between experimental and response surface equations predicted values
of thermo-physiological properties.
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Analysis of mean absolute percentage error and coefficient of determination shows
that prediction models using two different approaches i.e. ANN and response surface
fitting equations were able to explain over 90 % variability in the thermo-physiological
properties as suggested by R? value over 0.9 for all the predicted properties. Table 9
shows the comparison of mean absolute percentage error for training and test data
set of ANN and response surface equations. It is evident that mean absolute percent-
age error for training set of ANN is lower than response surface equations for all the
thermo-physiological properties. However, different trend was observed when test set
performance parameters of ANN were compared with response surface equations. ANN
showed less prediction error in predicting the thermal resistance (MAPE 4.59 as against
15.99 for response surface fitting equations) and air permeability (MAPE 7.40 against
12.48 for response surface fitting equations) of plated fabrics as compared to response
surface equations (Table 9). However, response surface model shows the ability to pre-
dict the thermal absorptivity (MAPE 3.51 against 5.13 for ANN) and moisture vapour
transmission rate (MAPE 4.02 against 7.3 for ANN) better characterized by low mean
absolute error percentage and higher coefficient of determination R? (Table 10) when
compared to test data set of ANN for the two properties. Prediction performance and
generalization ability of neural network depends on training data as well as input param-
eters. Thermal absorptivity is a transient heat transfer property which is reported to be
dependent on yarn and fabric surface characteristics apart from the bulk properties.
Slightly high error in prediction of thermal absorptivity by ANN might be the outcome
of the fabric surface texture and yarn roughness not being included as input parameters
in the development of neural network. However, the coefficient of determination for
ANN was close to response surface model suggesting that both the approaches could be
used for prediction of thermal absorptivity.

Table 9 Comparison of mean absolute error percentage for artificial neural network
and response surface equations

Mean absolute percentage error

ANN Response surface equations
Training Testing

Thermal resistance 2.03 4.59 15.99

Thermal absorptivity 3.10 513 351

Air permeability 3.15 740 12.48

Moisture vapour transmission rate 2.58 7.3 4.02

Table 10 Comparison of R? for artificial neural network and response surface equations

ANN Response surface equations
Training Testing

Thermal resistance 0.99 092 0.93

Thermal absorptivity 0.99 0.95 0.98

Air permeability 0.99 0.93 0.97

Moisture vapour transmission rate 0.98 0.90 0.99
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Moisture vapour transmission rate depends on inter yarn spaces available in the fab-
ric structure and the fibre’s moisture diffusivity. High mean absolute percentage error in
prediction of moisture vapour transmission rate by ANN might again be related to non-
inclusion of fibre parameters taking into the account the hydrophobicity and hydrophi-
licity of the fibres. However, R* value of 0.90 by ANN against 0.99 (Table 10) for response
surface equations was good enough to predict the moisture vapour transmission rate by
ANN.

Conclusions

Comparison of ANN and response surface equations in terms of their prediction per-
formance showed that both the approaches could explain over 90 % variability in the
thermo-physiological properties (R? value over 0.9). ANN showed less prediction error
in predicting the thermal resistance and air permeability of plated fabrics as suggested by
low values of mean absolute percentage error compared to response surface equations.
However, response surface equations predicted the thermal absorptivity and moisture
vapour transmission rate with higher R? compared to ANN.

Developed artificial neural network can serve as a boon to industries which are focus-
ing mainly on heat and air transport through fabrics. Response surface models can be
successfully put to practical use for industries where prime focus is the sensation con-
sumer feels on brief contact with skin (thermal absorptivity) and moisture transfer prop-
erties through fabrics as both factors determine the overall wearer comfort. Thus based
on the consumer’s needs and expectations, application area and serviceability criteria,
either of the two models can be successfully implemented in the textile industry for
prediction of thermo-physiological properties to have first hand observation before the
commencement of actual fabric production and evaluation.

Abbreviations

l:input from previous layer; W, weight connecting hidden neuron g and input neuron p; ¢: bias weights; #: transfer
function; x,: vector of current weight and biases; a,: learning rate; g,: current gradient; T, ath target output; P : ath
predicted output; N: number of training patterns; mse: mean square error; mse,.,: mean square error regression; y: perfor-
mance ratio; msw: mean square weight; MAPE: mean absolute percentage error.
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