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Introduction
The increasing adoption of point-of-care technologies as well as of rapid and cost-effec-
tive monitoring systems that can provide information on the progression of diseases and 
suggest therapeutic strategies on demand is rapidly revolutionizing the healthcare field 
(Iqbal et al., 2021; Kamei et al., 2015; Li et al., 2020; Miller et al., 2007; Sharma et al., 
2017; Uddin, 2019). However, some technical requirements, including low production 
costs, simple and rapid detection, sufficient sensitivity, and non-invasiveness, impede 
the practical applicability and commercialization of such systems. In this context, novel 
advanced materials and nanotechnologies are anticipated to be the key drivers of next-
generation sensing.

Nanowire networks comprising noble metals are promising materials for integration 
with optical chips owing to their large surface area, easy manipulation, stability in harsh 
physiological environments, and simple and scalable fabrication processes (Barucci 
et al., 2021; De et al., 2009; Groep et al., 2012). Thus far, many reports have discussed the 
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potential of nanoscale metallic devices in healthcare (Chang et al., 2020; Ramirez et al., 
2020); however, there are limited works on metal-nanowire-based healthcare systems.

Metal-nanowire-based networks, especially those intended for integration with 
low-cost sensing devices, are typically patterned in the micrometer scale once they 
are supported on a plastic substrate, conferring sensing systems with high sensitivity, 
reproducibility, and effectiveness (Amjadi et al., 2014; Gong et al., 2015; Kim et al., 2015, 
2018). Conventional lithography using liquid photoresists (PRs) has limited applicability 
for stretchable electronics because the uniform control of the thickness of liquid PRs and 
pattern size on polymeric substrates is difficult; moreover, the necessity of a post-ther-
mal annealing process to evaporate the solvent could damage the substrate and increase 
the processing costs (Schober et  al., 2020; Wu et  al., 2010). Furthermore, an organic-
based, toxic developer is used for liquid-PR-based patterning, which could degrade soft 
polymer substrates (Mooney et al., 2020; Wang et al., 2013).

Solid-state dry-film photoresists (DFRs) can be deposited using a simple lamination 
process; thus, simple, fast, and cost-effective patterning is possible. Moreover, this pro-
cess is directly applicable to the roll-to-roll manufacturing scheme required for the mass 
production of large-scale flexible devices (Kim & Hwang, 2018; Stephan et  al., 2007; 
Tsai et  al., 2006). DFR patterning uses non-toxic chemicals (Kim et  al., 2017), and an 
additional investment is not required to replace the conventional patterning procedure 
because the remaining steps for patterning, except the lamination, are the same as those 
used in the conventional patterning process using liquid PRs (Nilsen et  al., 2019; Ste-
phan et al., 2007).

In this study, a DFR-based patterning technology was developed for the fabrication of 
metal-nanowire-based chips to overcome the limitations of liquid-PR-based patterning 
processes. AgNW networks were successfully patterned on PET using a DFR to achieve 
multiple spots, thereby forming low-cost chips for the optical sensing of myoglobin 
(Mb), which was chosen in this study as a representative protein biomarker of several 
health impairments. Mb is found in accessible biological fluids such as urine and serum 
(Aydin et al., 2019; Premru et al., 2013; Yu et al., 2021). The detection efficiency of the 
implemented AgNW-based chips was investigated by surface-enhanced Raman scatter-
ing (SERS), which has recently emerged as a powerful optical tool for obtaining chemi-
cal and structural information from trace biomolecules in body fluids and physiological 
environments (Amicucci et al., 2021; Banchelli et al., 2019).

Methods
A 0.5 wt% AgNW suspension in ethanol was purchased from Nanopyxis and used with-
out post-treatment. The average diameter and length of the AgNWs were ~ 35 nm and 
25 μm, respectively. The AgNWs were coated on a PET substrate (KOLON Industries) 
with a thickness of 125 μm by using a Meyer bar (RD Specialties Inc., #6). The initial 
sheet resistance of the deposited AgNW electrodes was 3.4 ± 0.6 Ω/sq. The less densities 
of AgNWs than the condition of the initial sheet resistance resulted in the less SERS sig-
nal, which is not preferable for the sweat sensor. Thus, the density optimized to have the 
initial sheet resistance of 3.4 ± 0.6 Ω/sq was the optimized condition in consideration of 
costs and sensing performance. A DFR (KOLON Industries, KL-1015), with dimensions 
of 50 m (total length) × 15 μm (thickness) × 30 cm (width), was laminated on the AgNW 
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electrode on the PET substrate using a laminator (Jaesung Engineering, JSL-1200) at 
80 °C, a rolling speed of 1.6 m/min, and a roll gap of 1 mm. UV exposure for pattern-
ing was conducted through a film combine glass (FCG) mask in a vacuum. Na2CO3 (1 
wt%, Sigma-Aldrich) and NaOH (4 wt%, Sigma-Aldrich) solutions were used for devel-
oping and stripping, respectively. The microstructure of the patterned AgNW networks 
was characterized by optical microscopy (OM, Olympus, BX51) and scanning electron 
microscopy (SEM, Phillips, XL30 ESEM–FEG). The morphology of the samples under 
prolonged immersion in a protein solution was investigated by atomic force micros-
copy (AFM, Bruker). SERS analysis was performed under a micro-Raman spectrome-
ter (XPlora, Horiba) with a 532  nm excitation wavelength, 1200 grooves/mm grating, 
10× objective, 135 μW laser power, and 5 s integration time. SERS spectra were obtained 
by pouring 5 µL of different Mb sample solutions (within the 10–5–10–8 M range) onto 
single spots of the AgNWs/PET chip and allowing the solutions to dry. The SERS data 
presented herein are an average of 20 spectra collected by mapping experiments over 12 
mm2 areas within the deposited sample.

Results and discussion
A schematic of the fabrication and detection process of the AgNW chip prepared using 
a DFR is presented in Fig. 1. First, AgNWs were deposited on the PET film using a Mayer 
rod, followed by a thermal baking process at 150 °C for 20 min. AgNWs were partially 
embedded on the surface of the PET film by the thermal baking process; thus, stable pat-
terning was possible without the loss of nanowires during the post-development or strip-
ping process. Insufficient thermal baking resulted in a substantial loss of AgNWs during 
the patterning process owing to their low adhesion toward PET (Additional file 1: Fig. 
S1a), while AgNWs subjected to excessive thermal baking showed inadequate sensing 
performance owing to thermal damage (Additional file 1: Fig. S1b). Next, the AgNWs/
PET films were coated with the DFR through a simple lamination process, whereby a 
sticky polymer binder with acrylic acid branches on the surface of the DFR provided suf-
ficient adhesion between the DFR and samples. The patterning process was preceded by 
exposing the DFR-coated samples to UV light through a FCG photomask. UV exposure 

Fig. 1  Schematic of the fabrication and optical detection process of AgNW/PET chips
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was conducted for 120 s. Since the DFR is a negative-type photoresist, the area exposed 
to UV light was cured, bonding strongly with the AgNWs. A circular pattern was cho-
sen because it proves beneficial for effective drop-deposition detection (Banchelli et al., 
2019); thus, all the patterns in this study were fixed as spots with a diameter of 500 μm. 
The portion of the DFR not exposed to UV light was dissolved by an alkaline solution of 
Na2CO3, according to the following chemical reaction (An et al., 2017):

After development, a clear spot with a diameter of ~ 500  μm, corresponding to the 
cured DFR on the silver nanowires, was observed, as shown in Fig.  2a. Etching was 
achieved using a typical chrome etchant, whereby only the exposed AgNWs were 
removed. A stronger alkaline NaOH treatment was then performed to strip the cured 
DFR, where the chemical reaction between the acrylic acid in the DFR and OH− elimi-
nated the adhesive characteristics of DFR through the following mechanism (Kim et al., 
2011):

A clear spot with sharp edges corresponding to the AgNWs was observed after the 
stripping process, as shown in Fig. 2b, c. Finally, the AgNW chips were washed for 2 h in 
acetone to remove organic contaminants and then stored under vacuum at room tem-
perature until the time of characterization and SERS analysis.

The stability of the AgNWs was tested by prolonged incubation of the chip in a 10–6 M 
aqueous solution of Mb (Fig. 3a, b), revealing the absence of significant changes to mor-
phology even after 1 h, which confirmed the reliability of the AgNW chips given their 
resistance to biochemical solutions. To show the feasibility of the patterned AgNWs 
chips for optical detection, 5 μL of Mb solutions of decreasing Mb concentrations were 

Na2CO3 ↔ Na
+
+ NaCO

−
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−
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+ H2O ↔ NaHCO3 + OH

−

DFR− COOH + Na
+
+ OH

−
→ DFR− COONa

+
+ H2O.

NaOH ↔ Na
+
+ OH

−

DFR− COOH + OH
−
→ DFR− COONa

+
+ H2O.

Fig. 2  SEM images of the AgNW spot after the development process (a), and etching and stripping (b). 
Enlarged SEM image corresponding to the interface between the AgNWs and the PET substrate (c) (magenta 
square from (b)). Insets are OM images taken at the corresponding steps of a and b 
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dropped on single AgNW spots. After drying at room temperature, an SERS analy-
sis was performed. Figure 3c shows the SERS patterns of the deposited samples under 
532  nm laser excitation; notably, characteristic intense peaks that are mainly ascribed 
to the heme group of Mb (Banchelli et  al., 2019) can be observed, such as those at 
1623 cm−1 (v10), 1580 cm−1 (v19), 1440 cm−1 (v28), 1375 cm−1 (v4), 1229 cm−1 (v13), 
1170 cm−1 (v30), 1134 cm−1 (v22), 990 cm−1 (v4), and 756 cm−1 (v15). A sigmoidal cor-
relation between the band area of the 756 cm−1 mode and the protein concentration was 
observed within the 10–8–10–5 M range, and a plateau was observed at high values due 
to the saturation of all the accessible hotspots of the SERS substrate (Fig. 3d). The lowest 
detectable value of 10–8 M (corresponding to approximately 200 g/L) suggests the possi-
bility of the quantitative detection of Mb in biofluids at levels of diagnostic and prognos-
tic significance for renal and cardiac impairments (Loun et al., 1996).

Conclusions
In this study, a AgNW chip for the optical monitoring of Mb was fabricated by using 
a DFR. AgNWs were coated on a PET substrate, followed by post-thermal baking 
at 150  °C for 20  min. A DFR was then laminated on AgNWs/PET, which was sub-
sequently patterned by a photolithography process. Patterning using DFR is a 

Fig. 3  AFM tomography of AgNWs/PET chips a before and b after incubation in a Mb aqueous solution. c, 
d SERS detection with AgNWs/PET chips. c SERS spectra of Mb solutions with concentrations ranging from 
10−8 M to 10–5 M (black, naked chip; violet, 10–8 M; green, 10–7 M; blue, 10−6 M; red, 10–5 M). d Correlation 
between the 756 cm−1 band area and protein concentration (error bars represent the standard deviation)
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low-toxicity process because mild alkaline solvents were used during the develop-
ing and stripping steps. Through the DFR-based process, AgNWs were successfully 
patterned to obtain multiple spots with a diameter of ~ 500  µm without significant 
damage to the patterns. Finally, SERS was employed to confirm the feasibility of the 
AgNWs/PET chips for the optical detection of Mb. The results showed that protein 
concentration levels of clinical significance can be easily detected via the combination 
of the developed AgNWs/PET chips with SERS analysis.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40691-​022-​00297-6.

 Additional file 1: Figure S1. Optical microscope images of AgNWs baked at (a) 100 °C for 20 min and at (b) 180 °C 
for 20 min.
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