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Abstract 

An exhaustive and integrative overview of recent developments in 3D and 4D textiles 
based on Additive Manufacturing (AM) were provided in order to identify the current 
state‐of‐the‐art. Despite all scientific progress, AM applied on textiles is a challenging 
technique and is still at an embryonic stage of research and technological develop‑
ment (R&TD), mainly due to the technological gap between featured prototypes 
and scalability in manufacturing. Despite its full potential across a range of different 
applications, such as development of functional filament fibres/wires, 3D printing on 
textiles, 3D printing completed garments and 4D textiles, needs future developments. 
Although, AM applied on textiles, enables cost and resource efficiency for small scale 
production through localised production, shorten supply chain and demand driven 
manufacture, both customisable and scalable, embracing cost and environmental 
sustainability. The opportunities and limits of 3D and 4D printing textiles are also 
discussed. Finally, the conclusion highlights the potential future development and 
application of the convergence of advanced computational design techniques, prod‑
uct customization, mathematical modelling, simulation, and digital modelling within 
multifunctional textiles.
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Introduction
Additive manufacturing (AM), also known as 3D printing, is defined by the ISO/ASTM 
52,900:2021 as “a process of joining materials to make objects from 3D model data, usu-
ally layer upon layer, as opposed to subtractive manufacturing and formative manufac-
turing methodologies” (ISO/ASTM, 2021).

Stereolithography was the first patented AM technology (U.S. Patent 4.575.330), by 
Charles Wall in 1984 (Hull, 1984). Since that, AM has undergone considerable development 
and has been moving beyond its original prototyping function and small-scale production to 
advanced manufacturing of functional components in industrial sectors such as aeronautics, 
automobile, biomedicine and textiles (Alghamdi et al., 2021; Tian et al., 2022). Nowadays, 
AM is an unavoidable area for the new industry revolution, also called Industry 4.0, due to its 
ability to address some of the most significant challenges of industry in this century, such as 
cloud manufacturing, near net shape products and their customization (Cerejo et al., 2021).

In this scope, the main advantages of AM, over conventional manufacturing process 
are: (1) geometrical flexibility, which allows to improve and optimize product functional 
and structural features, (2) microstructure-properties modification through metama-
terials approach, (3) use of less raw material, (4) cost and resource efficiency for small 
scale production, (5) cloud manufacturing which shortens the supply chain due to a 
more localised production, with important sustainability benefits (Ali et al., 2019; Cab-
igiosu, 2020; Ford & Despeisse, 2016; Kabir et  al., 2020; Keefe et  al., 2022; Kim et  al., 
2019; Praveena et  al., 2022; Ruckdashel et  al., 2021; Vanderploeg et  al., 2017). Huang 
et al. (Huang et al., 2013) stated that: “AM is expected to become a key manufacturing 
technology in the sustainable society of the future”.

On the other hand, the main disadvantages of AM are: (1) post processing needs, (2) 
process variability influence the 3D object’s reproducibility, (3) undesired porosity and 
anisotropic features that compromise the mechanical properties obtained, (4) size lim-
itations on 3D objects to print and (5) slower build rate when it comes to mass cus-
tomization (Cabigiosu, 2020; Chakraborty & Biswas, 2020; Faludi et al., 2015; Kim et al., 
2019; Praveena et al., 2022).
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The seven categories of AM, according to ISO/ASTM 52,900:2021 are: binder jetting, 
directed energy deposition, material extrusion, material jetting, powder bed fusion, 
sheet lamination and vat polymerization (ISO/ASTM, 2021). The four main classes of 
materials used in AM are resins and colloids, filament/paste, powder and solid sheet 
(Guo & Leu, 2013). Therefore, the selection of materials depends on AM technology 
adopted and ranges from thermoplastics, thermosets, hydrogels and conductive materi-
als to rigid ceramics (Guo & Leu, 2013; Ligon et al., 2017).

The evolution of AM is clearly evident in recent applications across nearly every 
industry, such as in footwear (“Nike Flyprint is the First Performance 3D Printed Textile 
Upper,” 2018), jewellery (Yap & Yeong, 2014) and fashion industry (Zarek et al., 2016b), 
since 2010 when Iris Van Herpen showcased her first 3D printed dress (Herpen, 2010) or 
with the completely 3D-printed ready-to-wear N12 bikini (Lim & Fashion, 2014), trigged 
by the low cost and product customization from wearer’s body through a 3D scan (Spa-
hiu et al., 2016) and design highly complex structures (Xiao & Kan, 2022).

Also, functional filament fibres are been embedded in wearable textiles, with new 
functionalities, such as capacitive soft strain sensor fibres for detecting elongational 
strains (Frutiger et al., 2015), flexible energy harvesting (Chen et al., 2020; Peng et al., 
2019; Zhao et al., 2018), heaters (Park et al., 2019), piezoelectric and triboelectric nano-
generators (Dong et al., 2020; Park et al., 2018), flexible supercapacitors (Anjum et al., 
2020), light-emitting (Grimmelsmann et  al., 2016), light electroluminescence device 
(Tadesse et al., 2018), colour changing materials (Kan et al., 2015; Kao et al., 2016; León-
Cabezas et al., 2017), thermal comfort regulation fibres (Chatterjee & Ghosh, 2020; Gao 
et al., 2017; Li et al., 2021) and tactile sensors based on triboelectric effects (Chen et al., 
2021).

4D is opening new innovations and applications through research and technologi-
cal development (R&TD) of programmable textiles materials and smart wearables with 
self-transform and shape change ability (Khan & Hassan, 2021; Leist et al., 2017; Ras-
togi & Kandasubramanian, 2019). 4D printing combines 3D printing with a time change 
element under the influence of an external stimulus. 4D printing can be applied to tex-
tiles—4D textiles, therefore 4D textiles are structures or textile products that can change 
shape or function over time. A particular stimulus is applied to active the switching pro-
cess. Through this technology, garments or shoes (as an example) can change over time 
in terms of functionalities, shape or properties when exposed to a specific stimulus that 
triggers the response (Choi et al., 2015; Momeni et al., 2017).

Despite all scientific progress, AM applied on textiles is still at an embryonic stage of 
R&TD mainly due to the technological gap between featured prototypes and scalability 
in manufacturing (Gehrke et al., 2019). In addition, comfort is a widespread problem in 
textiles also the whole textile electronic should withstand washing, ironing and stretch-
ing over its life cycle (Paret & Crégo, 2019).

This paper aims to provide an exhaustive and comprehensive literature review of 3D 
and 4D print to highlight the full potential of these techniques based on textiles. The 
paper explores and discusses what research has been carried out and available products 
on the market until—2022.

The paper is organized into 5 sections. In Sect.  “Additive manufacturing”, the most 
common AM technologies used to create textile-based structures, are presented. 



Page 4 of 28Manaia et al. Fashion and Textiles           (2023) 10:20 

Sect. “3D and 4D printing textiles”, developments and applications of 3D and 4D print-
ing textiles, with a focus on four main topics: development of functional filament fibres/
wires, 3D printing on textiles, 3D printing fabrics and 4D textiles, are detailed. The 
opportunities and limits of 3D and 4D printing textiles are explored in Sect. “4D textiles 
and shoes”. Concluding remarks are finally given in Sect. “Conclusions”.

Additive manufacturing
The most common AM technologies used to create 3D and 4D printing textiles, which 
include Fused Deposition Modelling  (FDM™), Selective Laser Sintering (SLS), Direct Ink 
Writing (DIW) and Material Jetting Photopolymers (MJ) are depicted in the following 
subsections, as well as its basic principles and available materials. The main differences 
between these technologies are related to both, the method how the layers are processed 
and the materials used in the process, such as solid, powder and liquid-based methods 
(Pérez et al., 2020).

Fused deposition modelling—FDM™

FDM™ process was developed by S. Scott Crump in 1992 and patented in 1989 (U.S. 
Patent 5.121.329) (Crump, 1992).  FDM™ is a material extrusion process which allows 
to build 3D objects layer-by-layer, from a filament spool, according to the CAD model. 
Since the  FDM™ term is a trademark, the same technology is also known as Fused Fila-
ment Fabrication (FFF). This invention has transformed and catapulted the additive 
industry of 3D polymeric objects. Due to its simplicity and low cost, it is currently widely 
disseminated (for polymeric materials), both at industrial level and end users (Cerejo 
et al., 2021).

The first low cost commercial  FDM™ 3D printing was introduced in 1996, with Gen-
isys  FDM™ printer and Actua 2100 3D printer (Wohlers & Gornet, 2016).  FDM™ pro-
cessing parameters such as nozzle and printing bed temperatures, printing speed, part 
infill pattern type, part orientation and density, raster angle and width, perimeters width, 
building orientation and layer thickness have a significant impact on quality, mechanical 
properties, build time and dimensional accuracy of printed objects (Jaisingh Sheoran & 
Kumar, 2020; Lay et al., 2019; Singh et al., 2020a, 2020b).

A broad range of standard, engineering and high performance filaments are available 
in FDM. Polycaprolactone (PCL), acrylonitrile butadiene styrene (ABS), polypropylene 
(PP), polycarbonate (PC), polyamide (PA), polylactic acid (PLA) and polystyrene (PS) 
are the most commonly  FDM™ 3D printing materials (Parandoush & Lin, 2017). High 
performance filaments, such as polyetheretherketone (PEEK), TPU and silicone, show 
better mechanical, chemical and thermal properties than the commonly used plastic fil-
aments (Sharma & Rai, 2022; Xu et al., 2021a; Zhang et al., 2020).

In order to improve the properties of the  FDM™ printed objects, composite filaments 
with fibres and/or particles reinforced thermoplastics, have been developed (Cano-
Vicent et al., 2021; Chatterjee & Ghosh, 2020). Composite filaments can be filled with 
electrically and/or thermally conductive nanoparticles, such as carbon black (CBs) (Hui 
Yang et al., 2017), carbon nanotubes (CNTs) (Ly & Kim, 2017), graphene (Geim, 2009), 
graphene oxide (GO) (Zhu et al., 2010), boron nitride (BN) (Joy et al., 2020) and silver 
nanowires/nanoparticles (Wei et al., 2015) with the aim to make them multi-functional 
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materials, allowing its use on textile fabrics.  FDM™ printed polymer composite objects 
are found to exhibit improvements in functional and structural properties compared to 
the unreinforced printed objects (Chatterjee & Ghosh, 2020).

Selective laser sintering—SLS

Under the U.S. patent 4.863.538, Deckard (Deckard, 1986) disclosed “a method and 
apparatus for producing objects by selective sintering”, in 1986. SLS 3D printing uses 
a laser, which selectively melts the powdered material, fusing them into a 3D printed 
object. After the layer is completed, the building platform is lowered and a new layer of 
powder is added and melted on top of the previous layer. This process is repeated until 
the object is completely formed. SLS 3D printing does not require support structures 
(Guo & Leu, 2013; Kruth et al., 2003; Parandoush & Lin, 2017). Polymer powders based 
on nylon, PCL, PC, PLA, polyethylene terephthalate (PET) and TPU materials are avail-
able for SLS (Kafle et al., 2021; Kumar, 2003).

Direct ink writing—DIW

DIW was first developed by Cesarano and Calvert (Cesarano & Cavert, 2000) at Sandia 
National Laboratories in 1996 (U.S. Patent 6.027.326). DIW is an extrusion-based AM 
process, in which the filament-based suspensions or inks are continuously extruded out 
of the nozzle under controlled flow rates by the force of a piston, a screwing system or 
pneumatic pressure. Layer by layer, 3D objects are built, through filament solidification 
due to rheological transition from pseudoplastic to dilatant state or due to paste gelation 
(Chatterjee & Ghosh, 2020; Lewis, 2006; Xu et al., 2021b).

In DIW, inks materials such as polymers, biopolymers, ceramics or metal powders, 
hydrogels, organic monomers or nanomaterials, composite mixtures must meet strin-
gent rheological parameters, which include its apparent viscosity, yield stress under 
shear and compression and also viscoelastic properties, in order to achieve the desired 
geometry and functional properties (Wan et  al., 2020). DIW enables multi-material 
printing by using microfluidic printheads which, allows to switch or mix different mate-
rials, such as CNTs, graphene, polyvinylidene fluoride (PVDF), boron nitride, lithium 
iron phosphate nanoparticles, lithium titanium oxide nanoparticles, polydimethylsilox-
ane (PDMS) and polytetrafluoroethylene (PTFE) particles in order to 3D printing elec-
trical, thermal, flexible filaments fibres for textile fabrics (Rocha et al., 2020).

Material jetting photopolymers—MJ

MJ is a 3D printing technology which allows to build 3D objects layer by layer, by jetting 
photopolymer or wax droplets through a thermal or piezoelectric mechanism, onto a 
build platform and solidifying them with ultraviolet (UV) light. This technology enables 
multi-colour and multi-materials 3D printing due to its multi-nozzle printhead, allowing 
printing hard and soft polymeric materials in a single process as well as providing high 
accuracy and smooth surface finish (Gülcan et al., 2021; Singh et al., 2020a, 2020b). Pho-
topolymer resin materials can offer extreme durability, high rigidity and high tempera-
ture resistance and also can have similar properties to those of most common  FDM™ 
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3D printing thermoplastics materials, such as ABS, PLA and PC (Bass et al., 2016; Singh 
et al., 2020a, 2020b).

3D and 4D printing textiles
Recent developments and applications in 3D and 4D printing textiles have grown over 
the past decade focusing on four main topics: (3.1) development of functional filament 
fibres/wires which can be embedded into/onto textile fabric, (3.2) 3D printing on textiles 
(polymer-textile composites), (3.3) 3D printing fabrics completed garments or individual 
structures which might be assembled to create a flexible fabric and (3.4) 4D textiles and 
shoes, such as hybrid textile structures that can change shape and function over time 
when triggered by an external stimulus as temperature, light or other environmental 
stimuli (Chatterjee & Ghosh, 2020).

Development of functional filament fibres/wires

3D printing functional filament fibres have been developed through the addition of con-
ductive electric materials in order to integrate them into textile fabrics for wearable and 
stretchable sensors (Gregory et al., 1989; Palanisamy et al., 2018; Tseghai et al., 2020), 
such as wearable lithium-sulfur bracelet battery (DIW and  FDM™ based 3D printing) 
to energy storage and power supply electronic devices (Chen et al., 2020) or capacitive 
soft strain printing sensors based on multicore-shell fibre, consisting of concentric layers 
of alternating ionically conductive fluid and dielectric/encapsulant silicone elastomer in 
the form of filament fibre. Since it has a fibre shape, these sensors can be readily stitched 
or woven into textiles (Frutiger et al., 2015).

Researchers are combining both electrical, conductivity and elasticity of functional 
polymer fibres as well as the efficiency for integration into woven and knit textiles 
(Seyedin et  al., 2020). Stretchable and flexible triboelectric nanogenerator fibres were 
woven into textiles for self-powered by Park et al. (Park et al., 2018). The authors argued 
that fibres can be manufactured on a large scale and can be used in textiles. Wang et al. 
(Wang et  al., 2017) developed a high flexible, strength and electromechanical stable 
all-fibre lithium-ion battery by combining polymers inks for DIW. The inks containing 
CNTs as conductive, PVDF as a binder and either lithium iron phosphate nanoparticles 
for fibre cathodes or lithium titanium oxide nanoparticles for fibre anodes, were devel-
oped. Both fibre electrodes were coated with a gel polymer (insulation layer), twisted 
and bonded to form a quasi-solid electrolyte. Stretchable elastic fibres with a conduc-
tive core and insulative sheath were DIW printed by Chen et al. (Chen et al., 2021). The 
conductive core is composed by PDMS and graphene particles, while the insulator/tri-
boelectric sheath is composed of PDMS and PTFE particles. The core-sheath fibre can 
perform the function of a tactile sensor through triboelectric effects and tolerate tensile 
strain greater than 300%.

Beyond conductive electric fibres, thermal comfort regulation fibres (Gao et al., 2017) 
and flexible thermoelectric fibres (Peng et al., 2019; Zhao et al., 2018) are under investi-
gation. Continuous flexible thermoelectric fibres were realized by Pen et al. (Peng et al., 
2019), through DIW printed composite inks of bismuth telluride micrograins and non-
conducting polymer as a binder, followed by roller-pair compression. The low-power 
energy harvesting was demonstrated on wearable electronic textiles. Zhao et al. (Zhao 
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et al., 2018) conducted experiments on a 3D-printed flexible and wearable hybrid fibre-
shape integrated with an asymmetric supercapacitor and temperature sensor, providing 
both energy storage and temperature monitoring in a range between 30 and 80 °C, with 
a sensitivity of 1.95%°C−1. Thermal textiles based on thermally conductive boron nitride 
and polyvinyl alcohol composite fibres have been explored by Gao et al. (Gao et al., 2017). 
These fibres that were DIW printed, exhibited excellent mechanical (355 MPa, mechani-
cal strength) and thermal properties (55% increase in cooling effect compared with com-
mercial cotton fabric) and were used in woven and knitted fabrics. Leon-Cabezas et al. 
(León-Cabezas et al., 2017) blended PLA, ABS and TPU with different additives in order 
to provide functional properties, such as colour change (thermo/photochromic change), 
luminescence, conductivity and antimicrobial for  FDM™ 3D printing.

An example of functional filament fibres/wires available on the market is the Chro-
Morphous. ChroMorphous is a user-controlled and colour changing textile through 
micro wires waved into the textile fabric. The colours and patterns of fabric are con-
trolled through electricity and a smartphone application. Physically colour changing 
wires are due to an engineering blend of temperature sensitive pigments, micro cooper 
wires, electric current to generate heat and a computer chip. The wire’s change tem-
perature causes embedded pigment to change colour. Applications: fashion, textiles for 
home, automobile, office and defence (“ChroMorphous—A New Fabric Experience,” 
2022).

3D printing on textiles (non pre‑stretched fabric, therefore non 4D)

Direct printing onto textile fabric substrates has been used to obtain different and func-
tional composite structures (Dopke and Nils Grimmelsmann, 2017; Pei et  al., 2015; 
Spahiu et al., 2017). Rivera et al. (Rivera et al., 2017) have demonstrated a range of tech-
niques for embedding textiles into  FDM™ 3D printed functional and flexible objects, 
opening a new design space for the 3D printing community.

3D printing processing parameters, such as nozzle and printing bed temperatures 
(Eutionnat-Diffo et al., 2020; Grimmelsmann et al., 2018; Hashemi Sanatgar et al., 2017; 
Spahiu et al., 2018), nozzle and printing bed distance (decreasing the distance between 
both the adhesive forces increases) (Grimmelsmann et  al., 2018; Spahiu et  al., 2018), 
printing velocity (Hashemi Sanatgar et al., 2017; Kozior et al., 2020) and orientation of 
the infill layers (Kozior et  al., 2018), textile fabric characteristics (thickness, material, 
fabric structure and density) (Eutionnat-Diffo et al., 2020; Korger et al., 2016; Pei et al., 
2015) textile net (net-like fabrics increases the adhesion between both materials, since 
large mesh openings provides better wetting and impregnation between the molten pol-
ymer and yarns/fibres) (Sabantina et al., 2015) and filament polymer properties (Kozior 
et  al., 2018; Pei et  al., 2015) influence the adhesion between both polymer and textile 
fabric.

Although, some reported drawbacks, such as dimensional accuracy, non-uniform 
shrinkage, voids generation which leads to layer debonding following printing and 
slower building rate (Biswas et al., 2021; Hajare & Gajbhiye, 2022), experimental research 
aiming at increasing the adhesion of the textile fabrics by mechanical, thermal (Ironing 
and drying oven) (Kozior et al., 2018; Mori et al., 2014), physical (low pressure plasma 
treatments) and chemical treatments (washing, acetone and desizing) (Gorlachova & 
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Mahltig, 2021; Korger et al., 2016; Kozior et al., 2018) or by polymer coatings (ABS, PLA, 
poly(methyl methacrylate) (PMMA) coatings) (Meyer et  al., 2019; Unger et  al., 2018) 
have been carried out.

Korger et  al. (Korger et  al., 2016) observed that the higher the adhesion bonding, 
the more hydrophilic a textile fabric is. The hydrophilic pre-treatments promoted the 
form-locking connections of the polymer with the textile fabric. The above results are in 
agreement with the work of Kozior et al. (Kozior et al., 2018) and Gorlachova et al. (Gor-
lachova & Mahltig, 2021), the latter also reported that the less hydrophobic a polymer, 
the higher the adhesion on a hydrophilic fabric is.

Adhesion is critical for the resulting material structure properties and depends strongly 
on the combination of textile and polymer. In order to quantify the adhesion of 3D print-
ing objects to a textile fabric, Malengier et al. (Malengier et al., 2018) proposed three test 
methods (perpendicular tensile test, shear test and peel test), which helped standardize 
and benchmark their research. Sanatgar et al. (Hashemi Sanatgar et al., 2017) have inves-
tigated the adhesion optimization between polymers and nanocomposites on textile fab-
rics. The adhesion strength was quantified according to ISO 11339:2010. Adhesion tests 
were performed by Korger et al. (Korger et al., 2016), as specified in standard DIN 53,530, 
to evaluate the average values of maximum strength. In another research work, Korger 
et al. (Michael Korger et al., 2020) evaluated the abrasion and wash resistance of  FDM™ 
3D printed different thermoplastic elastomers (TPEs), such as TPUs and thermoplas-
tic styrene (TPS) onto different knitted and woven fabrics made of cotton, polyester or 
aramid. TPUs showed better adhesion due to their high polar interactions with fabrics, 
high durability against abrasion and fastness to washing, while TPS resulted in 3D printed 
objects with good quality, comfortable and flexibility. The wear resistance of  FDM™ 3D 
printed PLA onto polyethylene terephthalate (PET) fabrics performed on ASTM D4966-
12 was studied by Eutionnat-Diffo et al. (Eutionnat-Diffo et al., 2020). They reported that 

Fig. 1 Source:  GRDXKN© (“GRDXKN 4D Printing Technology Structure Print—Functional Textile Solutions,” 
2022)



Page 9 of 28Manaia et al. Fashion and Textiles           (2023) 10:20  

the 3D processing parameters, such as bed temperature and the textile fabric structure, 
defined by its weft density, weave pattern, roughness coefficient, fabric direction and yarn 
composition, had a significant impact on the adhesion, deformation, abrasion and tensile 
properties of 3D printed PLA onto PET fabrics.

A patented product based on 3D printing on textiles is the GRDXKN (Fig. 1). GRDXKN 
provides durability, flexibility, shock-absorbing, low weight, washability, protection to 
cooling down and abrasion-resistance. It is manufactured by printing a layer of polyu-
rethane onto a fabric base, which reacts with heat and rises into a foam. The technology 
is available in multiple colour options and creates no waste production (“GRDXKN 4D 
Printing Technology Structure Print—Functional Textile Solutions,” 2022).

3D printing fabrics

Attempts have been made to develop textile-like structures, such as woven or knitted 
structures (Beecroft, 2016; Partsch et  al., 2015; Valtas & Sun, 2016). Melnikova et  al. 
(Melnikova et al., 2014) combined the traditional approach of textiles structures with 3D 
printing technologies, SLS and  FDM™, to print weft knitted structures. It was reported 
that SLS with Nylon powder provided a lack of structural flexibility, whereas  FDM™ with 
soft PLA improved the flexibility, although it exhibited lower quality surface finish. Fol-
lowing the later research, Beecroft (Beecroft, 2019) evaluated the material performance 
of SLS Nylon (PA12) 3D printed weft knitted and interlocking structures. The struc-
tures exhibited both similar stretch and extensibility of weft knitted fabrics as well as the 
mechanical properties of the Nylon.

3D printed thin woven-like structures consisting of warp and weft were developed by 
Takahashi and Kim (Takahashi & Kim, 2019). By controlling the movement of an  FDM™ 
printer head, the PLA filament is interlaced across the warp structures. Different pat-
terns can be designed, through the control of the warp structures density and weaving/
interlacing patterns, thus enabling users to create their own flexible fabric designs out of 
rigid PLA. Also, conductive or even more flexible materials than PLA can be employed. 
Forman et al. (Forman et al., 2020) introduced DefeXtiles, a thin, flexible and breathable 
 FDM™ 3D printed quasi-woven fabric. Complex textile geometries are extruded per-
pendicularly to the bed, resulting in structures with a periodic gap between layers (small 
globs stretched along the print direction) and apparent warp-weft. Some explored appli-
cations were garment design, interactive objects, aesthetic patterning and actuators.

Chainmail structures consist of 3D printed micro or meso structures interconnected 
to create complex, foldable forms composed of thousands of articulated modules, which 
behave as a continuous textile (Gurcum et al., 2018). Chainmail patterns have been used 
in textile fabrics for garment production, such as Modeclix garment (Bloomfield & Bor-
strock, 2018) Voltage dress and venus dress (Koerner, 2017), both it were printed with 
a flexible material called TPU 92 with the SLS technology. Francis Bitonti in collabo-
ration with Michael Schmidt and Shapeways factory, has created a tailored 3D printed 
garment for Dita von Teese, fully flexible and similar to chainmail. Made using SLS, 
the garment consists of 17 pieces and features about 3.000 unique articulated moving 
components, taking over 400 h to print. The garment was featured in New York Fashion 
Week in the fall of 2013 (Grain & Unver, 2016). The Nervous System project, co-founded 
by Rosenkrantz and Louis-Rosenberg (Rosenkrantz & Louis-Rosenberg, 2017), takes a 
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new approach to chainmail structures by 3D printing. Unlike traditional fabric, the tex-
tile developed is composed of thousands of unique interlocking components to create a 
dynamical structure, fluid enough to be worn comfortably on the body. The 3D printed 
textile is not uniform; it varies in stiffness, drape, flex and pattern. Also the completed 
garment is customizable from the wearer’s body through a 3D scan. Wang et al. (Wang 
et al., 2021) designed a SLS 3D printed nylon chainmail, which can switch between soft 
state to rigid state when vacuum packed, becoming more than 25 times stiffer. The chain-
mail is comprised of an interlocked array of octahedrons. In the soft state, the chainmail 
can freely bend, fold and drape over curved objects. Wearable exoskeletons, bulletproof 
vests and reconfigurable medical supports are some of the suggested applications.

Some research efforts have been focused on geometric structures. By using  FDM™ 3D 
printing and exploring different geometric structures and materials (soft PLA, Nylon, 
TPU—Filaflex and Ninja flex), Spahiu et  al. (Spahiu et  al., 2020) designed a fully 3D 
printed dress. Both arrowhead shape structure and Filaflex filament, were selected for 
the final 3D printed model. Polymaker and Covestro jointly developed a processing tech-
nology to improve mass production of 3D printed wearable fabrics by combing three 
elements: flexible-materials specialized 3D printer and design software for fabric devel-
opment. The design software allows users to create geometric patterns, moiré patterns, 
density gradients effects, shape changes and organic textures. Flexible materials based 
on TPU were also developed (Davies, 2022).

Bionic structures and 3D printing technology have been explored by Julia Koerner 
(Koerner, 2019, 2017) on the SETAE jacket and ARID collection. 3D printing SETAE 
jacket is inspired by both microstructure and colourful patterns of Madagascan Sun-
set Butterfly wings. The wing setae patterns were digitised through an algorithm, which 
translated the colour pixels into 3D bristle patterns. Also inspired by the crystalline for-
mations of the Dead Sea, ARID collection is made of 38 3D printed objects, which can 
be assembled into a full dress or reconfigured into different combinations. The garment 
consists of a jacket, a skirt, a corset and a series of accessories.

In Table  1 are reported 3D printing garments available on the market or garments 
which were created for a fashion exhibition.

4D textiles and shoes

Skylar Tibbits introduced 4D printing concept in 2013 (Campbell et  al., 2014). 4D is 
opening innovations and applications through R&TD of programmable textiles mate-
rials, smart wearables with self-transform and shape change abilities (Khan & Hassan, 
2021; Leist et  al., 2017; Rastogi & Kandasubramanian, 2019). According to Pein (Pei, 
2014), 4D printing is defined as: “the process of building a physical object by additive 
layer manufacturing of stimuli-responsive composites or multi-materials system, which 
have the ability to change the shape/configuration, properties or functionality, when trig-
gered by an external stimulus or through human intervention over a particular domain 
of time.”

4D printing relies predominantly on the AM process and is also known as program-
mable materials or smart materials which are dependent on time-material-stimuli and 
structure–function correlations (Ali et  al., 2019; Fu et  al., 2022; Khare et  al., 2017) as 
well as mathematical modelling and simulation (Pei & Loh, 2018; Zafar & Zhao, 2020). 
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Table 1 AM technologies, materials and features/applications with regard to 3D printing fabrics, are 
depicted

Ref AM 
Technology

Materials Research/Features/Applications

(Koerner, 2017) SLS TPU 92 Brand name: venus dress (Fig. 2)

Figure 2 Venus dress. Credits: Venus dress, Julia Koerner 2017. Pho‑
tography: Tom Oldham

Development state: fashion exhibition, 2013

Features: completed wearable 3D‑printed dress
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Table 1 (continued)

Ref AM 
Technology

Materials Research/Features/Applications

(Rosenkrantz 
& Louis‑Rosen‑
berg, 2017)

SLS Rigid 
nylon

Brand name: kinematics dress and kinematic petals dress—nervous 
system (Fig. 3)

Figure 3 Nervous system

Development state: fashion exhibition

Features: computational geometry techniques with rigid body 
physics and digital fabrication are combined to create customized 
products. 3D printed hinge structures are interconnected to create 
complex, foldable forms composed of thousands of articulated 
modules, which behave as a continuous textile. The dress making 
process was: (1) 3D scan client, (2) sketch dress, (3) tessellate, (4) 
generate kinematics structure, (5) simulate draping, (6) compress 
into a smaller form for fabrication by 3D printing. It emerges from 
the 3D printer fully assembled
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Table 1 (continued)

Ref AM 
Technology

Materials Research/Features/Applications

(Bloomfield & 
Borstrock, 2018)

SLS Polyam‑
ide (PA12)

Brand name: modeclix (Fig. 4)

Figure 4 Modeclix. Credits: Mark Bloomfield, Shaun Borstrock Univer‑
sity of Hertfordshire

Development state: On the market

Features: 3D printing fabric customisation through a structured 
system of additively manufactured links. The system allows the 
interchangeability of links to remove or add links to adjust the 
size and shape, repair or re‑shape the garment design. Modeclix 
addresses principles of the circular economy: manufactured and 
scaled on demand, localised manufacture, enables repair, re‑use 
and re‑shape into different design

(Julia Koerner, 
2019)

MJ Flex‑
ible VERO 
multi‑
material

Brand name: SETAE jacket (Fig. 5)

Figure 5 SETAE Jacket. Credits: Setae Jacket for Chromorpho Collec‑
tion Stratays, Julia Koerner 2019. Photography: Ger Ger

Development state: fashion—chro morpho collection

Features: both bionic structures and multi‑colour 3D printing are 
explored. The jacket is composed of thousands of multicoloured 
bristle‑like structures that move with the wearer’s movement
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Therefore, 4D combines 3D printing with time change element under the influence of 
an external stimulus (Choi et al., 2015; Momeni et al., 2017) such as temperature (Ly & 
Kim, 2017; Pandini et al., 2020; Zarek et al., 2016a, 2016b), pressure (Ramuz et al., 2012), 
moisture (Ventcool fibre) (Dang & Zhao, 2021), stress (Gall et  al., 2004), light (Boyle 
et al., 2017; Lendlein et al., 2005; Roppolo et al., 2017), magnetic (Ze et al., 2020; Zhang 
et al., 2021), electrical (Liu et al., 2009), pH (Han et al., 2012; Nadgorny et al., 2016) or 
chemical compound (Berg et al., 2014).

Some examples of 4D smart materials are shape memory polymers (SMPs) (Alshe-
bly et al., 2021; Leng et al., 2011; Pyo et al., 2018), metamaterials (Bodaghi et al., 2017a, 
2017b; Fan et al., 2021; Lei et al., 2019; Ryan et al., 2020) and hybrid laminates (Stapleton 
et al., 2019).

SMPs, such as polycaprolactone (PCL), polytetrafluoroethylene (PFTE), polyvinyl 
chloride (PVC) and ethylene–vinyl acetate (EVA), are examples of materials that can 
undergo reshaping and recovering their original shape upon application of an external 
stimulus (Suriano et al., 2019; Yu et al., 2015). SMP are attracting researchers atten-
tion due to their low cost, lower density, large recoverable strain and the opportuni-
ties to develop both 4D printing technologies based on 3D printing and 3D printing 
functional materials (Biswas et al., 2021; Subeshan et al., 2021). The primary research 
areas currently in focus concerning 4D textiles are smart materials (Shin et al., 2017), 
equipment design/development (Zhang et  al., 2019) and mathematical modelling 
(Chung et al., 2017). Following are depicted some research works based on 4D textiles 
technology, both stimuli-responsive SMPs (1) thermoresponsive and (2) photore-
sponsive materials, (3) metamaterials and (4) hybrid laminates materials.

(1) Thermoresponsive shape memory properties of PLA (SMPLA) printed by 
 FDM™ on a Nylon textile were explored by Leist et al. (Leist et al., 2017). Smart tex-
tiles were successfully programmed into a temporary shape through the application 

Table 1 (continued)

Ref AM 
Technology

Materials Research/Features/Applications

(“Danit Peleg,” 
2022)

FDM™ TPU—
FilaFlex 
(brand of 
flexible 
3D fila‑
ment)

Brand name: Danit Peleg

Development state: “The first fashion collection 3D‑printed at home”

Features: Danit Peleg’ s 3D printed fashion designs are based on 
three approaches: printing with a known pattern, printing textiles 
for dapping and printing objects that can be linked together. The 
lace‑like textiles are based on filaflex’s flexibility and mesostructured 
cellular materials designed by Andreas Bastian. Also, Peleg uses 
auxetic patterns in some of her garments. Both lace‑like textiles and 
auxetic patterns can adapt to the body and have a more fabric‑like 
behaviour
Online sales: ready‑to‑wear 3D printed bomber jacket is available 
to purchase online. It takes about 100 h to print and is customiz‑
able through website options by selecting 3d printing fabric, lining 
fabric, typing back words, choosing the size and having a virtual 
fitting session

(Lim et al., 2014) SLS Nylon 12 Brand name: N12 Bikini

Development state: on the market

Features: N12 Bikini is a 3D printed ready to wear, is flexible and all 
closures are included
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of temperature (70 °C). Therefore, temperature allowed smart textiles to fold from 2D 
(initial shape) into 3D shape (deformed and fixed shape) and unfold to its initial shape 
(2D). Thermoplastic shape memory polyurethane (SMPU), was extruded as fibres and 
spun with a range of natural, synthetic yarns to produce an array of new yarns (SMPU 
yarns). Engineered woven textiles were manufactured with SMPU yarns. These smart 
woven textile designs for interior applications were able to change shape between an 
open and close woven structure (sunlight filter) under the influence of temperature 
(Chan Vili, 2007).

(2) Photoresponsive materials based on SMPU and photothermal carbon black 
(CBs) were explored by Yan et al. (Yang et al., 2017) in order to 3D printing of pho-
toresponsive shape memory objects from a  FDM™ printer. Similarly, Ly and Kim 
(Ly & Kim, 2017) investigated the properties of SMPU and its CNTs composites to 
develop smart textile and wearable products.

(3) Metamaterials are engineered materials whose properties are tailored by 
manipulating their internal physical structure rather than their chemical composi-
tion. Metamaterials are based on periodic patterns of geometrically designed “meta” 
cells. The material properties themself are not responsive to an external stimulus. 
There is a trend to use 3D printing technology to develop metamaterials (Braszkie-
wicz, 2021; Manen et al., 2021; Yu et al., 2018). Metamaterials with advanced func-
tionalities, such as multi-stable mechanism (Haghpanah et al., 2016; Ren et al., 2021; 
Tao et al., 2020; Yang & Ma, 2019), phase transformation (Chen & Jin, 2018; Khaje-
htourian & Kochmann, 2020; Yang et al., 2016), auxetic structures (auxetic refers to 
solid materials with negative Poisson ratio) (Braszkiewicz, 2021; Lei et al., 2019; Pan-
dini et  al., 2020; Ren et  al., 2018), shape-reconfigurations (Yang & Ma, 2020) and 
shock/impact energy absorbers (Chen et al., 2014; Ha et al., 2018; Hamzehei et al., 
2022; Yu et al., 2019) have been exploited with novel 2D and 3D engineered struc-
tures. The optimized process can be obtained through geometric parameterization 
(cell size, cell orientation, strut thickness, etc.), finite element modelling (FEM) 
and physical testing (Wallbanks et al., 2022; Yang & Ma, 2019; Zheng et al., 2021). 
Metamaterials with performance-driven functionality printed by FDM™ were stud-
ied by Bodaghi et al. (Bodaghi et al., 2017a, 2017b). 3D printed polyurethane-based 
shape memory showed both shape-shifting by self-folding (1D to 2D) and self-coil-
ing (2D to 3D) with potential use in mechanical or biomedical applications were 
demonstrated.

(4) Hybrid laminates consisting of 3D-printed patterns bonded or directly printed 
onto pre-stretched fabric are examples of 4D textiles (Han et al., 2020; Kycia, 2019; 
Schmelzeisen et al., 2017). Through parametric simulations, 3D printing patterns are 
analysed and optimised (Christie, 2017; Stapleton et  al., 2019). When the pre-ten-
sion is released, the planar shape becomes a 3D geometry due to equilibrium forces 
between the fabric’s restoring form and the opposed elastic stiffness of the pattern 
structure (Agkathidis et al., 2019; Berdos et al., 2020; Koch et al., 2021; Kycia & Gui-
ducci, 2020). Some design studios and researchers have been exploring and design-
ing three-dimensional hybrid laminates via  FDM™ technology, such as Shapemode 
design studio with the project SIKKA (combination of flexible textiles and  FDM™ 
3D printing technology) (“Delta WASP 3MT Experiences the 3D Printed Tissue,” 
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2020) and Schmelzeisen et al. (Schmelzeisen et al., 2017), which redefined the con-
cept of the hybrid laminate by introducing the time change element. Therefore by 
combining pre-stretched fabrics, 3D  FDM™ printing and the time change element, 
3D structures could have multiple change shapes in response to temperature, as 
external stimuli. “Active Membranes” based on hybrid laminates consisting of  FDM™ 
3D printed pattern of TPU 95 and PP fibres bonded onto pre-stretched fabrics were 
designed by Agkathidis et al. (Agkathidis et al., 2019). Through a parametric simula-
tion, 3D printing of the fibre pattern (embossing material), pre-stretching the textile, 
lamination of the embossed pattern onto a pre-stretched fabric and release of the 
laminate pre-stretched, the planar shape is converted into a 3D geometry. The fol-
lowing advantages are highlighted: flexibility, low weight and adaptability. Fallowing 
the previous research, an algorithm was developed by Berdos et  al. (Berdos et  al., 
2020), in order to predict the geometric pattern and the resultant behaviour of the 
composite material consisting of a pre-stretched fabric and a semi-elastic material in 
its 3D dimension state.

In Table 2 are depicted some prototypes based on 4D textiles and shoes.

Opportunities and limits of 3D and 4D printing textiles
AM (3D and 4D) is a disruptive technology which is shifting the manufacturing pro-
cesses toward a digital and global factory, promoting a more localised production, 
allowing product customization and on-demand production of small batches (Ahmed 
et  al., 2021; Sitotaw et  al., 2020). For instance, in fashion, 3D printing is regularly 
being used and some examples are depicted in Table 1.

Direct printing onto knitted and woven fabrics made of cotton, polyester or aramid, 
materials such as ABS, PLA, TPU and Nylon have been used to obtain different and 
functional composite structures (Dopke & Nils Grimmelsmann, 2017; Pei et al., 2015; 
Spahiu et al., 2017).

In sports, Adidas 3D printing running shoes midsole, tailored to the athlete’s foot 
by combining data, AM and bio-based materials are being brought into production. 
The 3D printing technology allowed the production of complex lightweight structures 
that optimise shock absorption and comfort (Yosra, 2022). Also, Nike 3D printed 
textiles for shoes upper, made by solid deposit modelling (SDM) with thermoplastic 
polyurethane (TPU) filament, are being used through translated athlete data into new 
textile geometries. The resultant fabric is a wire layer, flexible, lighter and breathable, 
which allows water to efficiently drain out (“Nike Flyprint is the First Performance 3D 
Printed Textile Upper,” 2018).

4D printing market is expected to grow at a compound annual rate (CAGR) of 42.1% 
between 2021 and 2027, in which 4D textiles are anticipated to contribute to the overall 
market with a share of 20%. The major end-use applications of 4D printing technology 
are expected to rise from military and defence, aerospace and healthcare. However, once 
the technology becomes available for mass production, it can meet the demands of other 
industries including textiles, apparel and footwear (“Global 4D Printing Market—Global 
Forecast 2017 to 2027,” 2021). Industry 5.0 (value driven) is projected to fuel the emer-
gence of 4D printing through a smart approach to the design process rather than the 
technology-driven (Industry 4.0) (Xu et al., 2021c). Industry 4.0 is associated with smart 



Page 17 of 28Manaia et al. Fashion and Textiles           (2023) 10:20  

Ta
bl

e 
2 

4D
 te

xt
ile

s 
an

d 
sh

oe
s: 

A
M

 te
ch

no
lo

gi
es

, m
at

er
ia

ls
 a

nd
 re

se
ar

ch
/f

ea
tu

re
s/

ap
pl

ic
at

io
ns

Re
f.

A
M

 T
ec

hn
ol

og
y

M
at

er
ia

ls
Re

se
ar

ch
/F

ea
tu

re
s/

A
pp

lic
at

io
ns

(F
ar

ah
i, 

20
16

)
Po

ly
Je

t 3
D

 p
rin

tin
g

PL
A

 +
 S

ha
pe

 m
em

or
y 

al
lo

y 
(S

M
A

)
Br

an
d 

na
m

e:
 C

ar
es

s 
of

 th
e 

G
az

e 
(F

ig
. 6

)

Fi
gu

re
 6

 C
ar

es
s 

of
 th

e 
G

az
e.

 P
ho

to
 c

re
di

t: 
Be

hn
az

 F
ar

ah
i

D
ev

el
op

m
en

t s
ta

te
: R

es
ea

rc
h/

pr
ot

ot
yp

e

Fe
at

ur
es

: I
nt

er
ac

tiv
e 

ga
rm

en
t b

as
ed

 o
n 

ey
e‑

ga
ze

 tr
ac

ki
ng

 te
ch

no
lo

gi
es

. T
he

 te
ch

no
lo

gi
es

 e
m

pl
oy

ed
 e

na
bl

e 
th

e 
ga

rm
en

t t
o 

m
ov

e 
in

 re
sp

on
se

 to
 th

e 
ot

he
r p

eo
pl

e 
is

 g
az

e,
 th

ro
ug

h 
a 

ca
m

er
a 

an
d 

SM
A

 a
ct

ua
to

rs
 e

m
be

dd
ed

 in
 a

 
3D

 p
rin

te
d 

ga
rm

en
t



Page 18 of 28Manaia et al. Fashion and Textiles           (2023) 10:20 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Re
f.

A
M

 T
ec

hn
ol

og
y

M
at

er
ia

ls
Re

se
ar

ch
/F

ea
tu

re
s/

A
pp

lic
at

io
ns

(G
ou

ds
w

aa
rd

 e
t a

l., 
20

20
)

FD
M

™
 (P

hy
si

ca
l c

om
‑

po
ne

nt
s)

  +
 E

m
br

oi
de

ry
 

M
ac

hi
ne

 (E
le

ct
ro

m
ec

ha
ni

‑
ca

l c
om

po
ne

nt
s)

Fi
la

m
en

t: 
tr

on
xy

 F
le

xi
bl

e 
TP

U
 +

 S
tr

et
ch

 fa
br

ic
: l

yc
ra

Br
an

d 
na

m
e:

 F
ab

ric
C

lik
 (F

ig
. 7

)

Fi
gu

re
 7

 F
ab

ric
C

lik
. P

ro
je

ct
 c

re
di

ts
: M

aa
s 

G
ou

ds
w

aa
rd

, A
be

l A
br

ah
am

, B
ru

na
 G

ov
ei

a 
da

 R
oc

ha
, K

ris
tin

a 
A

nd
er

se
n 

an
d 

Ro
ng

‑H
ao

 L
ia

ng
, 2

02
0

D
ev

el
op

m
en

t s
ta

te
: P

ro
of

‑o
f‑

co
nc

ep
t

Fe
at

ur
es

: A
 m

et
ho

d 
fo

r i
nt

er
w

ea
vi

ng
 fu

nc
tio

na
l p

us
hb

ut
to

ns
 in

to
 fa

br
ic

s 
th

ro
ug

h 
3D

 p
rin

tin
g 

an
d 

di
gi

ta
l 

em
br

oi
de

ry
 is

 e
xp

lo
re

d.
 M

ad
e 

of
 tw

o 
la

ye
rs

 s
tit

ch
ed

 to
ge

th
er

 a
s 

te
xt

ile
‑b

as
ed

 p
us

hb
ut

to
ns

: B
ut

to
n 

la
ye

r (
1)

 3
D

 
pr

in
t s

ta
r‑

lik
e 

st
ru

ct
ur

es
 o

nt
o 

pr
e‑

st
re

tc
he

d 
fa

br
ic

 a
nd

 C
irc

ui
t l

ay
er

 (2
) e

m
br

oi
de

r b
ot

h 
co

nd
uc

tiv
e 

an
d 

in
su

la
‑

tio
n 

ci
rc

ui
tr

y 
on

 a
 p

re
‑s

tr
et

ch
ed

 fa
br

ic



Page 19 of 28Manaia et al. Fashion and Textiles           (2023) 10:20  

Ta
bl

e 
2 

(c
on

tin
ue

d)

Re
f.

A
M

 T
ec

hn
ol

og
y

M
at

er
ia

ls
Re

se
ar

ch
/F

ea
tu

re
s/

A
pp

lic
at

io
ns

(G
ub

er
an

 &
 C

lo
pa

th
, 2

01
5)

FD
M

™
N

ot
 s

pe
ci

fie
d:

 p
la

st
ic

 
m

at
er

ia
l w

ith
 d

iff
er

en
t 

la
ye

r t
hi

ck
ne

ss
 +

 S
tr

et
ch

ed
 

fa
br

ic

Br
an

d 
na

m
e:

 A
ct

iv
e 

sh
oe

s 
(F

ig
. 8

)

Fi
gu

re
 8

 A
ct

iv
e 

Sh
oe

s. 
Pr

oj
ec

t c
re

di
ts

: C
hr

is
to

ph
e 

G
ub

er
an

 +
 C

ar
lo

 C
lo

pa
th

, S
el

f‑a
ss

em
bl

y 
la

b,
 2

01
5

D
ev

el
op

m
en

t s
ta

te
: R

es
ea

rc
h/

pr
ot

ot
yp

e

Fe
at

ur
es

: S
el

f‑t
ra

ns
fo

rm
in

g 
st

ru
ct

ur
es

 w
hi

ch
 re

co
nfi

gu
re

 in
to

 p
re

‑p
ro

gr
am

m
ed

 s
ho

e 
sh

ap
es

. I
t c

on
tr

ac
ts

 a
ro

un
d 

th
e 

fe
et

, s
hr

in
ki

ng
 in

 s
iz

e.
 T

he
 o

bj
ec

tiv
e 

w
as

 tw
of

ol
d:

 (1
) t

ai
lo

r‑
m

ad
e 

to
 th

e 
cl

ie
nt

’ s
 fo

ot
 a

nd
 (2

) m
ee

t t
he

 p
er

‑
so

na
l d

es
ig

n 
pr

ef
er

en
ce

s 
of

 e
ac

h 
cl

ie
nt

(N
ac

ht
ig

al
l e

t a
l., 

20
18

)
FD

M
™

TP
U

—
Fi

la
Fl

ex
Br

an
d 

na
m

e:
 C

us
to

m
iz

ed
 4

D
 p

rin
te

d 
sh

oe
s

D
ev

el
op

m
en

t s
ta

te
: fi

ni
sh

ed
—

si
ng

le
 u

se
r

Fe
at

ur
es

: A
 c

us
to

m
iz

ed
 s

ho
e 

is
 d

es
ig

ne
d 

an
d 

3D
 p

rin
te

d 
in

 o
rd

er
 to

 m
ee

t s
pe

ci
fic

 n
ee

ds
 o

f a
es

th
et

ic
 a

nd
 

co
m

fo
rt

. T
he

 g
eo

m
et

ry
 o

f t
he

 m
at

er
ia

l i
s 

de
si

gn
ed

 to
 s

up
po

rt
, fl

ex
 a

nd
 c

ha
ng

e 
w

ith
 th

e 
m

ov
em

en
t o

f e
ac

h 
fo

ot
. T

he
 m

an
uf

ac
tu

rin
g 

pr
oc

es
s 

w
as

 c
om

pr
is

ed
 b

y 
tw

o 
st

ag
es

: (
1)

 th
e 

fe
et

 is
 s

ca
nn

ed
, t

he
 d

ig
ita

l s
ho

e 
de

si
gn

 is
 

ge
ne

ra
te

d 
us

in
g 

a 
3D

 d
es

ig
n 

so
ft

w
ar

e 
an

d 
(2

) P
rin

tin
g 

pr
oc

es
s



Page 20 of 28Manaia et al. Fashion and Textiles           (2023) 10:20 

factories, real-time and flexible production of personalized products (Wang et al., 2016; 
Zhong et al., 2017), whereas industry 5.0 is focused on sustainability (waste prevention 
and recycling), human-centricity, digitalization, manufacturing customization and artifi-
cial intelligence technologies in order to increase the flexibility and production efficiency 
(Nahavandi, 2019; Xu et al., 2021a, 2021b, 2021c).

Nowadays, the design and printing technologies of 4D textiles based on stimuli-
responsive are still in their R&TD stage and remain a great challenge and opportunity 
for customized textiles, apparel and footwear (Ali et al., 2019). By changing the colour 
(“ChroMorphous—A New Fabric Experience,” 2022), structure and texture (Ali et  al., 
2019), through a stimulus reaction, smart textiles can provide thermal comfort regula-
tion (Gao et al., 2017). Most of the 4D textiles are developed in research institutions, in 
which the research areas fall into the development of new equipment and smart materi-
als, mathematical modelling and research on deformation mechanisms (Ahmed et  al., 
2021; Biswas et al., 2021; Zhang et al., 2019). Also, 4D textiles are limited to experimen-
tal prototyping, such as the examples given in Table 2.

Some exceptions, are for instance, the commercially available SMPU membrane 
 Diaplex® patented by Mitsubishi.  Diaplex® is a non-porous “smart” membrane, which 
provides properties such as waterproof, windproof and breathability by changing 
its molecular shape upon low temperatures (the gap between the SMPU molecules 
decreases) and at temperatures above 10  °C through memory effect activation returns 
to its original shape (reverse molecular process).  Diaplex® can be attached in multi-layer 
textile fabrics and can be provided as a membrane, pellets, filament and liquid (Thakur, 
2017).

Furthermore, textiles are inhomogeneous, anisotropic, porous and deformable materi-
als allowing free movement. These characteristics of textile structures determine their 
unique and different behaviour when compared to other engineering materials (Hashemi 
Sanatgar et  al., 2017; McCarthy, 2016). Hence, researchers and designers have been 
rethinking woven and knitted fabrics with novel functionalities that cannot be obtained 
with the textile fabrics, promoting significant sustainability benefits and a sustainable 
future for materials (Kim et al., 2019; Zapfl, 2022).

In addition, the materials used in 3D printed fabrics results in stiff and rigid cloth-
ing, which are uncomfortable to wear and most are made by petroleum-based polymers, 
such as ABS, PLA and PU, while natural textile fibres (wool) as 3D printing materials are 
still in an early development stage (Perry, 2018). Therefore, research on new and exist-
ing materials and deposition/extrusion technology is required (Hashemi Sanatgar et al., 
2017) to provide comfort, breathability and flexibility for the fabrics.

Nonetheless, TamiCare (TamiCare. Introducing COSYFLEX, 2021) developed an AM 
technology called CosyFlex to manufacture tailor-made fabrics, using liquid polymers, 
such as latex, silicon, polyurethane, teflon and textile fibres. TamiCare claims that its 
technology is environmentally friendly (recycled raw materials, bio-based “ingredients”, 
reduced water usage, reduced carbon footprint and virtually no scrap), the products are 
manufactured on demand and the fabrics are engineered to exhibit high-performance 
and comfort.
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Conclusions
In the current review, we have discussed the concepts of additive manufacturing, fused 
deposition modelling, selective laser sintering, direct ink writing and material jetting-
photopolymers, recent developments and applications in 3D and 4D printing textiles 
with focus on four main topics, development of functional filament fibres/wires, 3D 
printing on textiles (polymer-textile composites), 3D printing completed garments or 
individual structures and 4D textiles and shoes. Finally, the opportunities and limits of 
3D and 4D printing textiles are depicted.

Several research and R&TD projects specific to AM applied on textiles are underway 
both in the academic and industrial fields to overcome the current limitations, which 
will lead to the improvement of prototypes for industrial applications. The furthest sci-
entific advances include 4D printing and its applications, opportunities and challenges in 
textiles, which are vast and are acknowledged by several research groups and experts in 
the field.

By combining advanced computational design techniques, product customization 
from the wearer’s body through a 3D scan, mathematical modelling, simulation and digi-
tal modelling (3D printing), the successful way toward multifunctional textiles is paved, 
opening the future for the design and manufacturing of innovative textiles and smart 
wearables with self-transform, shape change ability and thermal comfort regulation, 
which enable the interaction both our bodies and external environment.
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