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Abstract 

With the ongoing miniaturization of wireless devices, the importance of wear-
able textiles in the antenna segment has increased significantly in recent years. 
Due to the widespread utilization of wireless body sensor networks for healthcare 
and ubiquitous applications, the design of wearable antennas offers the possibility 
of comprehensive monitoring, communication, and energy harvesting and storage. 
This article reviews a number of properties and benefits to realize comprehensive 
background information and application ideas for the development of lightweight, 
compact and low-cost wearable patch antennas. Furthermore, problems and chal-
lenges that arise are addressed. Since both electromagnetic and mechanical specifica-
tions must be fulfilled, textile and flexible antennas require an appropriate trade-off 
between materials, antenna topologies, and fabrication methods—depending 
on the intended application and environmental factors. This overview covers each 
of the above issues, highlighting research to date while correlating antenna topology, 
feeding techniques, textile materials, and contacting options for the defined applica-
tion of wearable planar patch antennas.

Keywords: Textile antenna, Wearable communication, Patch antenna, Design 
requirements, Smart textiles, E-textiles

Introduction
The widespread and growing interest in integrating clothing into the communication sys-
tem, is nowadays mainly driven by new concepts such as the Internet of Things (IoT). This 
involves the identifiability, communication and interaction of objects. Several electronic 
components such as batteries, sensors, actuators, data processing units, connectors and 
antennas define a wireless communication system. In this context, the term electronic tex-
tiles (e-textiles) is introduced. These are fabrics in which electronics and interconnections 
are woven (Stoppa & Chiolerio, 2014). One of the future goals is that textile antennas can 
replace the bulky antennas in e-textiles within IoT and 5G networks (Mukai & Suh, 2021).

Planar antenna topologies are widely used for near-body communications due to their 
high body isolation, low profile, robustness, simple fabrication, and at the same time 
low cost. Textile materials, unlike conventional materials, offer better bending behavior, 
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lower permittivity and less weight (Salvado et al., 2012). This, in combination with the 
planar topology, makes them an interesting option for near-body communication. Some 
small companies and startups are aiming to integrate electronics into clothing to make it 
more comfortable to wear without the need for additional devices.

According to this, the field of application is very versatile. Textile antennas are used, 
for example, in medical monitoring of patients (Yadav et  al., 2020; Song et  al., 2021), 
GPS sensing for personal safety (Salonen et al. 2004), wireless information transmission 
(Wagih et al., 2021), and sports (Coyle et al., 2009). Since the available space above the 
textile surface is large, they can also be used for energy harvesting (Yamada, 2022). Spe-
cific requirements for the design of wearable textile antennas are needed because planar 
and flexible textile substrates are now being used, which are generally not immediately 
associated with high-frequency circuits. They must guarantee a comfortable and astheti-
cally acceptable design as well as robust performance against bending, wrinkling, wash-
ing and ironing.

The approaches to the design and integration of the textile antennas encounter some 
difficulties. Therefore, the rest of the paper is organized as follows: Textile antennas pre-
sent a current challenge in terms of suitable simulation models, which is discussed in 
"Project-specific application and challenges" section. In order to understand the neces-
sary context, "Project-specific application and challenges" section additionally lists the 
different application areas as well as the advantages of textile antennas. Since the possi-
ble technologies for the production of textile antennas already play a role in the previous 
part, "Manufacturing techniques for textile antennas" section deals with the following 
manufacturing processes: Thin and uniform metallization layers, weaving and knitting, 
embroidery, inkjet and screen printing, and metallized nonwovens. The selection of the 
most suitable conductive thread in terms of conductivity, strength and flexibility is also 
discussed in the literature. Further on in the paper, we will deal with the key properties 
of conductive filaments. One of the most important parameters is the surface resistance, 
which has an impact on the performance of the antenna. Furthermore, "Characteriza-
tion of conductive materials" section also deals with electrically conductive hybrid yarns 
that combine the properties of two or more fibers. Nowadays, the development of con-
ductive hybrid yarns is one of the most important research areas to meet the various 
requirements of functional textiles. Another challenge facing the designer of a textile 
antenna concerns the choice of a suitable antenna topology. Here, a variety of conflicting 
electrical and mechanical requirements must be reconciled. Depending on the operat-
ing frequency and the particular application, the focus is on knitted patch antennas as 
we will deal with it in future works ("Possible Antenna Topology for defined application 
area"section). In order to simultaneously meet the mechanical requirements for robust-
ness while ensuring high Radio Frequency (RF) performance, the choice of a suitable 
feeding technique for textile antennas is crucial. There are several ways to feed a patch 
antenna, among which we discuss coaxial probe feeding, microstrip line feed, aperture 
coupled feed, and proximity coupled feed in "Feeding techniques for patch antennas" 
section. Also, the connection between flexible textiles and stiff electronic components 
has always been structurally weak and a limiting factor in the establishment of smart 
textiles in our everyday life. Therefore, "Contacting Options for Electronic Textiles" sec-
tion focuses on the fabrication of reliable connections between conductive textiles and 
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conventional electronic components. Both advantages and disadvantages are compared 
and their behavior under load is analyzed.

Literature review
Project‑specific application and challenges

Future simulations and measurements will focus on developing textile antennas that can 
be used for wireless communication or as elastic sensors. Conceivable applications for 
the use of antennas as sensors would be the monitoring of respiratory rate to increase 
the safety of first responders or the long-term monitoring of the state of oedema and 
its progression during the day, which is currently not possible. This may lead to more 
effective medication. In order to get a comprehensive overview of the various produc-
tion steps and procedures, the overall technological process for manufacturing a wear-
able antenna is illustrated in a scheme (Fig. 1) at the end of this section. The following 
paragraphs will then go into more detail.

A challenging design process of textile (sensor) antennas, which can be integrated into 
garments and sleeves, will be facilitated by simulations and the subsequent characteri-
zation. This enables a design process that considers the functional characterization of 
textile elements with sufficient precision prior to fabrication and testing. Understanding 

Fig. 1 Overall technological process for manufacturing a wearable antenna
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the high-frequency electronic properties is key to the design and development of new 
applications based on textile structures.

The main difference between conventional metal-based and textile-based antennas is 
the conductive surface, which is continuous in the former case. This leads to high con-
ductivity combined with a uniform electromagnetic (EM) field and thus high efficiency. 
Designing a high efficiency textile-based antenna is challenging due to the discontinu-
ous and anisotropic surface. Some authors have already studied the efficiency of tex-
tile antennas: According to Locher et  al. (2006) a knitted antenna shows an efficiency 
of 45% whereas an antenna with a conductive metal wire woven into its fabric already 
reaches an efficiency of 78% (Ouyang & Chappell, 2008). However, the incorporation of 
the metal wires increases the manufacturing process and reduces the flexibility of the 
fabric. Literature indicates that both high conductivity and flexibility can be achieved by 
embroidering with conductive yarn (Wang et al., 2012).

Fundamentally, for the challenges presented above, it is important to understand 
how the conductive filaments change the current flow in the antenna at its operating 
frequency. The authors in Banaszczyk et  al. (2007) reported the current distribution 
under DC conditions on conductive fabric and pointed out that the sheet resistance of 
the fabric is affected by the fiber direction, the current direction, and the contact resist-
ance. Accordingly, it is of great importance to analyze the respective structures of textile 
antennas in detail. Also, the analysis of the gaps between the yarns is crucial for the per-
formance of textile antennas and depends on the textile structure ("Manufacturing tech-
niques for textile antennas" section) as well as the diameter of the yarns. Due to these 
limitations, it is not easy to define an EM simulation model that accurately describes 
the characteristics of textile antennas. Therefore, the focus for future research is to effi-
ciently develop material models that can be used to derive design rules.

Methods
Manufacturing techniques for textile antennas

The design and especially the manufacturing process of a wearable antenna are crucial to 
the antenna performance and production time. When selecting the appropriate method, 
good agreement between design and simulation results should be ensured, which in turn 
guarantees the robustness and reproducibility of a textile antenna. The manufacturing 
techniques can be categorized as follows:

• Thin and uniform metallization layers;
• Conductive textile yarns to weave or knit the conductive patterns;
• Conductive textile yarns to embroider the conductive patterns;
• Inkjet and screen printing onto non-conductive textile materials; and
• Deposition of metal coatings onto non-conductive nonwoven fabrics.

In addition, Table  1 provides an overview of the manufacturing processes commonly 
used in the literature with respect to textile antennas.

Thin and uniform metallization layers

Thin and uniform metallization layers on non-conductive textile substrates are a com-
mon method for producing textile antennas. The metal coating can be achieved either by 
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attaching copper or silver tape, or by applying metal foils onto the textile fabric. This is 
a relatively simple and fast process compared to other methods that require more steps, 
such as weaving or knitting conductive textile yarns.

The thickness of the metallization layer is critical to the antenna’s performance as it 
affects the electrical properties of the antenna, including its impedance and radiation 
efficiency.

One advantage of this technique is that it can easily be integrated into existing tex-
tile manufacturing processes such as printing, which can lower production costs and 
increase scalability. In addition, the use of thin and uniform metallization layers enables 
the production of antennas with a wide range of shapes and sizes, especially for simple 
geometries that do not require high precision.

There are also some challenges associated with this technique, such as the adhesion 
of the metal to the textile substrate, which can affect the antenna’s durability. Factors 
such as bending or environmental conditions including moisture and heat come into 
play (Tsolis et al., 2014). Additionally, the choice of metal and thickness of the metalliza-
tion layer must be carefully selected to ensure optimal performance, which may require 
extensive testing and optimization.

Weaving and knitting with conductive textile yarns

Conductive textile yarns can be used to weave or knit the patterns of antennas. This 
method is often used in the production of complex and precise antenna geometries 
where the idea of applying metal layers or printed patterns is insufficient. The use of con-
ductive textile yarns for knitting or weaving antennas allows for a certain tolerance and 
flexibility in the structure (Tsolis et al., 2014). Compared to other methods, this provides 
better adaptability to different antenna shapes and sizes. For knitted or woven struc-
tures, it is possible to vary different parameters to thereby meet specific performance 
requirements. For example, wale and course density of knitted fabrics or warp and weft 
density of woven fabrics can be modified, as well as the yarn diameter.

When using weaving techniques, the yarns are woven horizontally and vertically to 
create a flat and dense structure. The threads are twisted into a cross pattern, so two sets 
of yarns are used. When knitting, the threads run parallel to each other and form loops. 
These loops can be arranged in different patterns and densities. Qualitatively, this means 
that knitted fabrics are more elastic, as the threads run one after the other in each row. 
Woven fabrics are less stretchy because the threads are interwoven in a crosswise pat-
tern (Almohammed et al., 2021).

Embroidery technique for creating conductive patterns

Another way of applying conductive patterns to textiles is to embroider them using con-
ductive textile yarns. The conductive threads form the antenna pattern on the textile fab-
ric, while the non-conductive fabric serves as the substrate.

Embroidered textile antennas can be seamlessly integrated into garments and other 
textiles without being noticeable or distracting. As a result, they may be used in a variety 
of applications, such as consumer electronics or medicine (Ramya et al., 2021; Osman 
et al., 2011), without detracting from the aesthetics of the product. Furthermore, it offers 
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the advantage of being a relatively simple and cost-effective technique that does not 
require additional materials such as adhesives or metal layers.

However, precision is limited with this process, although this limitation can be par-
tially addressed through the use of computer-assisted embroidery. Furthermore, embroi-
dered textiles usually exhibit an anisotropic pattern. The conductivity depends not only 
on the current flow of the pattern, but also on the geometry, stitch direction, and stitch 
density. Higher antenna efficiencies can be achieved when the main current flow is par-
allel to the stitch direction. This can lead to further challenges if the design is to work at 
higher modes where the current flows in the perpendicular direction (Tsolis et al., 2014). 
In addition, efficiency is also increased by using a narrower stitch spacing. However, this 
leads to less flexibility and a longer yarn length, which in turn is associated with higher 
manufacturing costs.

Inkjet and screen printing onto non‑conductive textiles

Inkjet and screen printing methods use conductive ink to print the antenna pattern onto 
non-conductive textile materials. Screen printing requires a mask that can be reused, 
but it is not a practical solution for different individual designs. Inkjet printing elimi-
nates the need for masks, increasing flexibility in pattern creation (Tsolis et al., 2014). 
However, inkjet printing is typically slower and more expensive than screen printing. 
The choice of printing method depends on the specific application requirements. For 
example, screen printing is often used to produce RFID antennas on textiles (Kellomäki 
et al., 2012).

There are different types of electrically conductive inks available on the market for var-
ious applications. These inks are designed to be easily printed with a conventional color 
printer. Examples of conductive inks include carbon nanotubes, polymers, and metallic 
nanoparticles (Mehmann et al., 2017).

Antennas made by this process have lower wash resistance as the ink can wear off over 
time. Conductive ink can be protected with a breathable thermoplastic to ensure stable 
performance after multiple washing cycles. Printing on rough surfaces such as textiles 
is generally challenging as they are porous materials that make it difficult to create con-
tinuous highly conductive traces. Further challenges, such as resistance to stretching and 
self-motion as well as resistance to high temperatures required to remove the non-con-
ductive solvent from the ink, must be considered in this method. In the literature, there 
are initial experiments with dipoles (Chauraya et al., 2013) and patch antennas (Whit-
tow et  al., 2014) that reduce the inherent surface roughness of cotton fabric by using 
a screen-printed intermediate layer. This allows printing antennas with reasonable effi-
ciency with only one or two ink layers. The performance of the antenna can be improved 
by printing multiple layers, but this increases material costs and manufacturing time and 
decreases line resolution. Since the ink layer is thin, issues regarding penetration depth 
must be considered. This is likely to limit the applicability of inkjet printing to higher 
frequencies.

Metallized nonwoven fabrics

Nonwoven electrotextiles are a largely untouched area of research as a manufacturing 
method for wearable antennas. In textile technology, nonwoven technology is assigned 
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to the field of surface production. Nonwovens differ from classical materials (woven, 
knitted) primarily in the fact that they are manufactured without the process step of 
yarn production. Here, the textile surface formation takes place directly from the plas-
tic or fiber without any detours. As a rule, nonwovens have a tangled fiber layer and 
thus tend to have isotropic material behavior, whereas woven fabrics have an anisotropic 
structure due to the defined warp and weft thread direction (Pietsch, 2011).

One of the future goals in the field of textile-based antennas is to produce compli-
ant antenna designs with clean and sharp edges/corners and to develop antennas with a 
conductive surface volume similar to their metal counterparts (Wang et al., 2015). Elec-
trospun nonwoven fiber matrices yield a continuous conductive material with a coverage 
factor similar to metallic antennas because conductive chain-oriented nanofibers create 
a continuous conductive path on the surface. This technology can be used to develop 
complicated antenna designs with high resolution and precise geometry. Electrospun 
nonwovens have a higher surface volume fraction than nets produced by knitting, weav-
ing and embroidery. A multi-threaded structure with a large surface area is created, 
resulting in high conductivity comparable to copper.

Furthermore, the use of nonwovens allows for larger antennas at significantly lower 
weight and cost (Deaett et al., 2008). However, it should be kept in mind that metallized 
nonwovens exhibit lower flexibility and elasticity, making them less suitable for applica-
tions that require high stretchability. In contrast, knit and woven fabrics tend to be more 
resilient and elastic, making them more suitable for applications such as sportswear and 
medical devices.

Characterization of conductive materials

If the focus is on the textile patch antennas mentioned in the introduction, the conduc-
tive material for the patch and ground plane plays an important role in addition to the 
thickness and dielectric constant of the substrate. To ensure good performance of the 
antenna, textiles are selected based on their electrical and mechanical properties. Three 
forms can be found in the literature: metallized polymer yarns (Breckenfelder, 2013; 
Altaş et  al., 2020), conductive hybrid yarns (Safarova & Militký, 2012; Shahzad et  al., 
2019; Berglin et al., 2012) or conductive polymer threads (Steinmann et al. 2014; Gehrke 
et al. 2019; Hu et al., 2022; Grancarić et al. 2018). Not only the electrical properties of the 
yarn, but also the expected service life play a role in the characterization. An additional 
protective layer is designed to prevent environmental influences, including water, from 
having a negative impact on the electrical properties of conductive yarns and reduce 
their service life (Baribina et al., 2018; Periyasamy et al., 2022).

Due to the planar structure of e-textile antennas, the surface resistance and the resis-
tivity ( � ·m ) characterize the electrical behavior. A low and stable electrical surface 
resistance is required to minimize electrical losses and thus increase the efficiency of the 
antenna. Conductive textiles with a surface electrical resistance of less than 1 �/square 
can be found on the market. At this point, it should be noted that surface resistance is 
only used to represent materials with a uniform thickness. For conductive threads, linear 
resistance is often specified, which is measured in ohms per unit length ( �/m).
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Looking at Fig. 2, it quickly becomes clear that also the structure of the material has an 
influence on the surface resistance. For example, the conductive threads of the fabric on 
the left side can be better aligned with the direction of the current, making woven struc-
tures more efficient due to the low conduction losses.

The surface resistivity ρs is related to the conductivity via the following equation. Here, 
t describes the thickness of the material:

In order to be able to establish textile antennas on the market and to use them purpose-
fully in sectors like medicine, sports or the military, factors such as washability or drying 
must be taken into account in addition to the electrical properties (Lam et  al., 2022). 
Rotzler & Schneider-Ramelow (2021) discuss the influence of various variables on the 
washability of e-textiles. Among other things, the influence of conductive yarns and tex-
tiles is presented. According to this, conductive yarns mostly show a low resistance to 
washing and drying processes.

In contrast, manufacturers such as CleverTex (Hrdinova & Hanik, 2010) or Amann 
(AMANN group, n.d.) advertise products that have excellent washing resistance and are 
also suitable for industrial washing. They rely on hybrid conductive threads, which allow 
flat passive elements such as antennas to be integrated directly into textiles. Threads 
coated by conductive materials or threads containing conductive wires serve as the basic 
building block and enable wash-resistant, flexible and stretchable units. Therefore, the 
structure and the most important properties will be discussed in more detail in the next 
subsection.

Conductive hybrid threads

The technology for producing electrically conductive hybrid threads makes it possi-
ble to combine ultra-fine metal wires based on stainless steel, copper, brass, nickel or 
iron alloys with synthetic threads such as polyester (PES) or polyamide (PA). CleverTex 
(Hrdinova & Hanik, 2010), for example, twists metallic microwires with a non-conduc-
tive textile material, usually a high-strength PES thread (Fig. 3). A multifunctional smart 
yarn is the result of this process. It is fully compatible with known textile technology 
processes such as sewing, embroidery, weaving or knitting.

If we look at possible thread types in Table 2, remarkable electrical properties become 
apparent. Comparing the individual lines with each other, they differ mainly in the 

(1)σ =

1

ρs · t

[

Sm
−1

]

.

Fig. 2 Classification of fabric structure: a Woven fabric structure, b Non-woven, c Knit fabric structure and d 
Braid (Sobuj, 2015)
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number of conductive wires in the thread and the diameter. Depending on the area of 
application, there are also differences in the use of the conductive material. All these fac-
tors influence the electrical properties—mainly the electrical linear resistance, which is 
generally very low when using conductive hybrid threads.

Fig. 3 Multiple twisting of metallic microwires (1) with a non-conductive textile material like cotton, 
polyester, etc. (2)

Table 2 Overview of the most important material parameters of different hybrid conductive yarns

Optical diameter, linear resistance values represent the average value, i.e. currently measured value can be in the range ± 
5 %

# Material composition No. of 
synthetic 
threads

No. of 
metal 
wires

Optical
diameter 
[mm]

Fineness
[tex]

Linear 
resistance 
[�/m]

(nominal 
value  @ 20◦C)

Tenacity 
[cN/tex]

(textile 
strength)

1 PES multifil/Cu Ag 4 4 0.23 51 6.5 31.6

2 PES multifil/Cu Ag (insu-
lated)

4 4 0.23 51 6.5 32.0

3 PES multifil/Cu Ag 2 8 0.16 65 3.0 14.0

4 PES multifil/Cu Ag (insu-
lated)

2 8 0.18 68 3.0 13.5

5 Elastil multifil/Cu Ag 2 8 0.21 70 3.20 7.9

6 Elastil multifil/Cu Ag 
(insulated)

2 8 0.21 70 3.20 7.9

7 Silver coated Polyamide/
Polyester
Ticket no. 30

1 2 0.40 96 < 85 30.2

8 Silver coated Polyamide/
Polyester
Ticket no. 50

1 2 0.36 62 < 150 31.1

9 Silver coated Polyamide/
Polyester
Ticket no. 120

2 1 0.23 28 < 530 45.0



Page 13 of 28Marterer et al. Fashion and Textiles            (2024) 11:9  

The following list shows further properties and advantages of conductive hybrid yarns, 
which are listed on the manufacturers’ websites (Hrdinova & Hanik 2010; AMANN 
group, n.d.).

• Non-toxic, no skin irritation;
• Surface of the monofilament can be selected as either an insulating or electrically 

conductive variant;
• High mechanical resistance; and
• Resistance to maintenance stress.

Possible material suggestions for defined application area

The overall goal of the next area of research is to develop prototype textile antenna-
based sensors that can be integrated into garments and sleeves and allow long-term 
monitoring of the state of oedema and its development during the day. Based on the 
defined field of application ("Project-specific application and challenges" section), initial 
suggestions will therefore be made at this point regarding possible threads that can be 
knitted into a garment.

According to CleverTex (Hrdinova & Hanik, 2010), threads based on silver-plated cop-
per wires are particularly suitable. Two variants are available in each case:

• non-insulated wires (so-called bare wires); and
• wires insulated with a thermoset PUR insulation

If the end product is in a direct connection with the skin, insulated wires are usually 
preferred. In this way, the skin is not irritated by the metal. However, possible problems 
with contacting or de-insulating the wires for electrical contacting should be considered. 
The insulation of textile wires is still under development. Various materials, in particular 
thermoplastics, are currently being investigated. However, the wire insulation does not 
affect the mechanical or electrical properties (Table 2) of the finished filaments.

As can be seen from Table 2, PES has often been used in the choice of synthetic fila-
ments. Elastil is also a modified PES, which has higher elasticity and is suitable for 
knitwear.

The developed antenna-based sensors for textiles should have high mechanical resist-
ance and minimal degradation of textile performance. Clevertex recommends choosing 
the thread that expands a higher number of individual wires. If several wires break, the 
multi-wire thread can still work.

The Amann Group product line, on the other hand, contains three products made of 
silver-coated polyamide/polyester hybrid. Table 2 again summarizes the most important 
properties, as found in the manufacturer’s data sheets (AMANN group, n.d.). The mul-
tifilament, silver-coated yarn is 3-ply twisted. AMANN Silver-tech 30 and AMANN Sil-
ver-tech 50 both consist of two branches of silver-coated polyamide and one branch of 
polyester. AMANN Silver-tech 120, on the other hand, has one branch of silver-coated 
polyamide and two branches of polyester.
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Possible antenna topology for defined application area

From an antenna performance point of view, stable antenna characteristics and max-
imum radiation efficiency are desired, which requires that the effects of human body 
proximity be minimized. The latter also means that morphology and body movements 
should not significantly alter the antenna’s operating characteristics.

As described in the introduction, textile antennas for data transmission as well as 
antenna-based sensors will be developed in the future course of the project. The use 
of antennas as sensors (e.g., monitoring respiratory rate or long-term monitoring of 
oedema status) requires that they be placed in close proximity to the human body. The 
textile-based microstrip patch antenna provides sufficient shielding from the human 
body thanks to the adequately large ground plane, so that the radiation characteristics of 
the antenna hardly change in the vicinity of the human body. As the antenna radiation is 
diverted away from the human body, the absorption of EM fields in the body tissue can 
be reduced (Mahfuz et al., 2022).

The majority of published studies on high-frequency conductive textiles so far deal 
with computer-controlled embroidery, where conductive elements, such as a patch, are 
embroidered on a non-conductive textile base or substrate layer (Seager et  al., 2013). 
Knitted textiles for technical and medical applications have also been addressed in the 
literature (Bettermann et  al., 2023; Fan et  al., 2020). Looking more closely at knitted 
structures, a regular arrangement of the unit cell is characteristic. These are periodic 
arrangements whose wavelength is comparable to or smaller than the structure’s period. 
Resonance phenomena are expected to be due to the natural periodic structure of the 
knitted fabric. Currently, there are no known publications that critically address either 
this aspect or high-frequency characterization of knitted conductive structures in gen-
eral, particularly in the millimeter frequency range (30 GHz to 300 GHz).

Primarily, the published works are purely metrological recordings of reflection and 
transmission coefficient (Tennant et  al., 2012; Williams et  al., 2007)—mainly for the 
improvement of EM shielding (Tunakova et al., 2020). Since EM simulations of knitted 
structures have not been systematically investigated so far, there is no quantitative eval-
uation regarding the effect of deformation on EM parameters such as surface current 
distribution, field distribution, etc. A simulation and the additional knowledge regard-
ing the periodic material structure should lead to insights that cannot be obtained by 
a purely metrological analysis. The theoretical models to be developed will deepen the 
knowledge of the periodic structures and reduce the corresponding analysis on the real 
structure remarkably.

Feeding techniques for patch antennas

Due to the flexible structure of a textile antenna, factors such as bending, stretching and 
moisture must be taken into account, which makes the performance to be highly sensi-
tive and volatile. An essential step in providing stable antenna operation is the selection 
of the most appropriate feedline technology, as the key to an efficiently operating textile 
antenna is to ensure maximum power transmission.

The majority of newly developed flexible textile antennas have a coaxial feed mecha-
nism to test the performance. Nevertheless, flexible antennas proposed in literature are 
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now more often based on planar feeding techniques. In general, the contacting options 
used can either have a direct connection, including microstrip inserts and coplanar 
waveguides (CPW). Alternatively, indirect feeding mechanisms, such as capacitive prox-
imity feeding or aperture coupling, have also been proposed. A summary of different 
techniques and their advantages and disadvantages for textile applications can be found 
in Table 3, although a first overview is already given in the further course.

The coaxial feed technique has the outer conductor of the coaxial probe connected to 
the ground plane, and the inner conductor penetrates the dielectric and makes contact 
with the patch. The coaxial probe introduces an inductance that depends on its length 
and is determined by the substrate thickness of the antenna (Xu et al., 2005; Sankaral-
ingam & Gupta, 2010). The main advantage of this technique is that the coaxial feed can 
be placed anywhere within the patch to match the 50� input impedance. Thus, it is easier 
to find the correct impedance point than with the transmission line technique. Imped-
ance matching is easily achieved using capacitively coupling radiators (Samal et al., 2014) 
or by adjusting the position of the feed point (Van Baelen et  al., 2018; Sankaralingam 
& Gupta, 2010). In addition, the ground plane isolates the spurious radiation from the 
feed and results in better radiation performance (Pazil et al., 2021). Since flexible tex-
tile antennas are ergonomically more suitable for on-body operation, this feeding tech-
nique is not ideal. The rigid coaxial probe is part of the antenna and cannot be removed 
after the antenna test, so we focus on planar solutions for wearable applications in the 
remainder of this paper.

Microstrip feeding is often used as a planar option in textile technology. In addition 
to a radiator patch, the dielectric substrate and a ground plane, a transmission line (TL) 
is also required, as shown in column 2 of Table 3. With this feeding technique, the input 
impedance of 50� can be obtained by modifying the length and width of the TL. How-
ever, microstrip feeding is suitable only for thin substrates, since the 50� microstrip 
line otherwise becomes very wide. Excitation of higher order modes follows as a con-
sequence (Pazil et al., 2021). Undesired cross-polarization radiation also degrades effi-
ciency and bandwidth performance. If we consider inset feeding in parallel, problems 
can arise here during fabrication with regard to the tolerances of textile technology, 
since the slots on both sides of the feed line must be very narrow in order to achieve a 
characteristic impedance (Joler & Mihalić, 2022). For this reason, the proximity feeding 
technique will be investigated next.

Ideally, multilayer feeding techniques provide better textile performance than, for 
example, coaxial probes, since there is no need for rigid pins going through different lay-
ers and the connector can be removed after the antenna is evaluated. Multilayer micro-
strip feed techniques increase antenna bandwidth (BW) and are robust to bending. 
However, due to the multilayer alignment, a very precise fabrication process is required 
(Grilo & Correra, 2015).

Basically, there are two main techniques of multilayer feeding. The first type is called 
EM coupling scheme or proximity coupled feeding technique. In this technique, two 
dielectric substrates are used so that the feed line is located between the two substrates 
and the radiating area is located on the top substrate. The proximity feeding mechanism 
has the distinct advantage that any radiation is shielded from the feed line and poten-
tially re-radiated from the patch, resulting in good cross-polarization and body isolation 
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(Del-Rio-Ruiz et al., 2018; Duffy, 2000). Compared to other feeding methods, the use of a 
proximity feed can not only improve the operating BW of the antenna (Grilo & Correra, 
2015), but also reduce the footprint of the design, making it more suitable for integra-
tion into a portable system (Martinez et al., 2020). The coupling between the patch and 
the microstrip feedline is inherently capacitive - limiting this technique for large sub-
strate thicknesses. If the distance between the feed line and the radiating layer exceeds 
a critical limit, inefficient capacitive energy transfer occurs due to limited EM coupling, 
usually resulting in poor impedance matching. However, approaches to counteract this 
problem can already be found in the literature. It essentially involves a microstrip line 
with a vertical short to the top metal layer (Pinapati et al., 2020). This should allow the 
excitation of a wide range of textile antennas—especially interesting for substrate thick-
nesses that are not practical with traditional methods such as inset feeding and tradi-
tional proximity feeding.

An increase in BW by non-contact feeding methods can also be achieved by aperture 
coupling. In this approach, the radiating patch is separated from the microstrip feed line 
by the ground plane. The coupling between the patch and the feed line is provided by a 
slot or opening in the ground plane. To what extent the feedline and patch are coupled 
is determined by the shape, size, and location of the opening (Ramkumar et al., 2020). 
In general, interaction between the feedline and the radiating conductor can be avoided 
using the aperture technique, leading to a reduction in spurious radiation. The main 
disadvantage is the high back radiation, which is undesirable for body worn communi-
cations (Del-Rio-Ruiz et al., 2018). In aperture coupled feed technique the feed line is 
directly in contact with the tissue and hence absorption is actually larger, which results 
in a high level of Specific Absorption Rate (SAR) under the antenna (Leduc & Zhadobov, 
2017).

Contacting options for electronic textiles

The possibility to connect electronic components or electronic modules with fab-
ric circuits is of significant importance for applications in the field of e-textiles. In the 
following, different approaches with regard to contacting will be presented and their 
advantages and disadvantages listed. Basically, a distinction is made between connectors 
and permanent connections.

Snap fasteners

Connectors are often associated with the concept of modularization. A major concern 
regarding electronics in textiles is reliability during washing. In Belov et  al. (2008), a 
robust, interchangeable snap-on electrical and mechanical connection is used that 
allows components to be removed before washing. In the literature, common snap fas-
teners from the textile industry are often mentioned (Fig. 4a), which are sufficiently reli-
able both mechanically and electrically (Chen et  al., 2016; Linz et  al., 2005). Different 
application requirements, such as convenient reuse, recycling, or disposal of compo-
nents are among the main advantages of this technology (Dang et al., 2022). Since tex-
tiles mainly have a two-dimensional character, the size of the connectors has a negative 
impact.
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Permanent connections are particularly useful when using conventional SMD compo-
nents. A large number of applications are already known for the development of intel-
ligent textiles in the fitness or health sector. Again, factors such as washability, elasticity 
or wearing comfort play a role in the choice of contacting options.

Contacting by ultrasonic welding

Welding is a process used to join both metals and textiles, and in both cases the materi-
als to be joined are melted locally. The fundamental difference between the welding and 
soldering method is that an additional material is not melted to make the joint, but the 
materials themselves melt. Welding is not a common joining technique for e-textiles, 
however there are certain applications for which it shows great benefit.

First, the ultrasonic welding process is presented, which is a way to replace the much 
larger snap fasteners. The joining process is based on a combination of ultrasonic vibra-
tions and pressure, whereby thermoplastic material is melted in the welding area and 
penetrates into the fiber interstices. Subsequent solidification takes place under pres-
sure. This creates a mechanical and electrical joint in the same process. The welding 
results are influenced by various parameters and effects. For example, the strength of 
the welded joint depends on the amount of molten material at the welding point. The 
addition of another thermoplastic material in the weld area can significantly improve the 
reliability and durability of the realized joints. Furthermore, factors such as the type of 
processing (woven, knitted, non-woven) or the right choice of welding tool play a role. 
It is characterized as an established, economical and fast process, which is easy to auto-
mate and well suited for mass production in the textile industry (Jones, 2013).

This joining process is frequently found in the literature: for example, in Micus et al. 
(2021) a method is presented to connect wires for cable-based applications to the func-
tional textiles by ultrasonic welding. The authors in Dils et al. (2022) focused on the real-
ization of stable, low-impedance electrical contacts between crossing hybrid conductive 
yarns by ultrasonic spot welding (Fig. 4b). Atalay et al. (2019) implemented ultrasonic 
welding technology to analyze its suitability for the production of e-textile transmission 
lines. Two groups of yarns, namely stainless steel yarns and silver-plated yarns, were 
investigated together with PES fabrics.

In the course of these experiments (Micus et al., 2021; Atalay et al., 2019; Dils et al., 
2022) some results appeared, which are to be considered depending on the application. 
Contact resistance is one of the crucial quantities in the analysis of electrical contacts. 
Four-wire resistance testing is particularly well suited for determining contact resistance 
without taking the lead resistance of the test wires into account. The measurement of 
contact resistance can provide information about the quality of the contact itself. The 
resistance increases during the washing cycles as the coating of the conductive yarns suf-
fers from the mechanical and chemical stress during the washing process. While the first 
few cycles did not have much effect on the measurement results, after repeated washing 
and drying cycles, a decrease in conductivity and an exponential increase in resistance 
could be perceived. Comparing different papers, it can be seen that this also depends on 
the selected yarn and its composition (Atalay et al., 2019). In addition, it was shown that 
the compounds were hardly affected mechanically by the washing process. The results 
of the washing cycles prove that machine washing has no influence on the adhesion 
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strength. Contacting by ultrasonic welding enables a safe and reliable bonding. Since the 
method refers to wearable technologies, parameters and materials must be chosen care-
fully to avoid damage to the conductive fabric (burns, breaking of conductors). Further-
more, it is known that the mechanical resistance and long-term stability of the ultrasonic 
welded electrical connection can be further strengthened by a non-conductive adhesive 
(TPU) or a conductive insert (Ag-coated nonwoven).

Contacting by resistance welding

Resistance welding has proven to be one of the most effective ways to make cross-point 
connections and disconnects. Dhawan et al., (2004) published findings obtained in the 
fabrication of electrical circuits from woven fabrics. A number of possible methods 
for making interconnections and disconnections at crossing points in woven circuits 
required for signal transmission were investigated by them. They focused on two types 
of resistance welding techniques, namely top-bottom welding and parallel gap welding 
(Fig. 5).

In general, resistance welding generates heat at the interface of the components being 
joined by passing an electric current through them. To form the welding seam, the cur-
rent is applied for a certain period of time while an appropriate force is exerted at the 
intersection of the components (Post et al., 2000).

As mentioned above, in top-bottom resistance welding, the welding current is applied 
at the intersection from an upper probe and flows across the plane of the fabric to a 
lower probe, heating and melting the conductive filaments at the intersection. In par-
allel gap welding, the welding current is applied from one side of the fabric using two 
parallel welding probes. The welding current flows from one of the welding probes to 
the orthogonal conductive filaments at the crossing point and then to the other welding 
probe. The method of parallel gap resistance welding is particularly useful when fabric-
based circuit boards need to be separated at certain points to control the current path in 
the circuitry. By using a high welding current, a great amount of heat can be generated 
which melts the thread material between the probes, causing cuts or interruptions.

To determine the mechanical and chemical resistance of the welded joints, many tests 
have already been carried out in the literature. In general, Dhawan et  al. (2004) indi-
cates minimal peripheral damage to the adjacent PES fibers due to welding. The dam-
age becomes greater as the value of the welding current increases during top-bottom 
welding. In summary, top-bottom resistance welding provides less favorable results than 
parallel-probe resistance welding in this regard. Suchý et  al. (2020) published results 
after dry heat test, bending test, thermal shock test and washing test. The results show 
that the welding seams are resistant to increased temperatures. Also, the bending test 
did not show any significant changes in the electrical resistance of the produced welded 
joints. Major problems could be detected in the washing test, since resistance welding 
in the contact area removes the non-conductive components in the thread structure. As 
these provide the mechanical strength to the thread, a high number of failures could be 
observed with increased load due to washing. Resistance spot welding requires that the 
contact area be coated with additional material after welding. This process is a major 
disadvantage of resistance welding, making it more time-consuming compared to ultra-
sonic welding.
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Contacting by thermocompression bonding

The processes presented above or in the literature, such as ultrasonic welding or embroi-
dery (Linz et  al., 2005; Stanley et  al., 2022), were developed specifically for textile 
substrates and have a low contact resistance. However, it is necessary to increase the 
mechanical and chemical resistance, which is only possible through an additional step in 
the manufacturing process—encapsulation.

The combination of pressure and heat for welding is called thermocompression bond-
ing (Mehmann et  al., 2017). This is another way of contacting SMD components and 
electrical modules. It is an inexpensive and easy to realize solution, mainly used in 
smaller quantities or for individual layouts (Fig. 6).

For this connection technique, the first step is to design a component housing with 
cavities, which is then produced using a 3D printer. The components can be fixed in 
it without the use of an additional bonding agent. Again, in its simplest form, this is a 
purely mechanical contact. The SMD component is pressed onto the conductive layout 
and fixed in place by the housing, which is then melted onto the textile substrate and 
cooled under continuous pressure. The same process can be repeated on the reverse side 
of the textile to protect the electrical contact area on both surfaces. The three variables 
of this process - temperature, time and pressure - can be customized. Thus, encapsula-
tion is carried out together with the electrical contact in a single production step.

Again, the scope of application has already been limited by various functional tests 
using four-wire resistance measurement. The authors in Hirman et  al. (2022) use the 
thermocompression method with one-sided encapsulation for electrically conductive 
textile stretchable ribbons. It turns out that this method is not suitable for this type of 
application and stress. In contrast to contacting with electrically non-conductive adhe-
sive (NCA) in the next paragraph, the electrical resistance increases quickly in this 
case and the joint did not withstand the functional test in practice. However, promis-
ing results were obtained by a more complex thermocompression method in Kalaš et al. 
(2020). The contact resistance increased only slightly during washing and drying. Fur-
thermore, the electrical contact resistance in Kalaš et  al. (2021) could be reduced by 
applying SnBi solder paste to the conductive textile pads or by realizing SnBi bumps on 
the SMD component leads.

Fig. 5 Three basic methods of resistance welding and an example of realized contacts ( © [2022] IEEE. 
Reprinted, with permission, from Suchý et al. (2022))



Page 22 of 28Marterer et al. Fashion and Textiles            (2024) 11:9 

Non‑conductive adhesive bonding

Finally, a contacting method based on a non-conductive adhesive bonding will be pre-
sented, as it is both simple and very versatile in terms of the selection of fabric circuit 
and the type of electronics to be contacted.

The choice of adhesive depends on the particular application. In Hirman et al. (2022), 
a UV-curable, acrylic-based adhesive AA3926 from Henkel Company is proposed. It is 
beneficial that the adhesive cures and does not re-melt when the assembly is exposed 
to high application temperatures and also a high modulus can be observed. Both could 
improve the reliability of the contact under harsh environmental conditions.

Since textiles are subjected to dynamic loads such as bending or stretching, the 
authors in Linz et al. (2012) rely on thermoplastic elastomer adhesive with low modulus. 
Contacts based on thermoplastic adhesive are potentially repairable as they can be re-
melted. Since insulation of conductors is important in many textile electronics applica-
tions, the authors show that there are advantages if the adhesive for the bonding process 
is identical to the thermoplastic insulating material of the textile circuit. The problems 
that can arise when thermoplastic elastomers are used as adhesives are contact degra-
dation due to temperature-induced movement of the components and increased stress 
relaxation of the polymer.

Generally, direct contact between the conductive filaments and the component pad 
is made by mechanical pressure alone. The adhesive is only used to fix the mechanical 
contact.

Apart from their good conductivity, the adhesive-bonded contacts proved to be very 
reliable. Several reliability tests have been performed in the literature (Linz et al., 2012; 
Hirman et al., 2022; Von Krshiwoblozki et al., 2012), where the contact resistance was 
measured after multiple loading and between several wash cycles using the four-wire 
method. During these tests, the contact resistance did not increase significantly. Only 
in the first cycles an increase could be noticed, in the further course of the measure-
ment the values stabilized. The adhesive bonded samples withstood thermal stress and 
temperature-humidity tests without failure. For this reason, it can be concluded that it is 
a reliable technology for integrating electronics into textiles. The use of adhesive-bonded 
connections is advantageous, especially between SMD components and electrically con-
ductive, stretchable textile ribbons (Fig. 7).

Fig. 6 Detail of contacted resistor fabricated by the thermocompression technique and a side view of the 
encapsulated SMD component (Kalaš et al., 2023)
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Conclusions
Textile antennas are one of the main elements of wearable and portable equipment 
design. They serve as platforms for body-centric sensing, localization and wireless com-
munication systems owing to their lightweight, versatility, relatively inexpensive, and 
conformal features. The choice of manufacturing process and material variants for the 
conductive and non-conductive components of the textile antennas depend on the appli-
cation. During the course of the paper, thin and uniform metallization layers, methods 
such as weaving or embroidery with conductive textile yarns, inkjet and screen printing, 
and metal coatings on nonconductive nonwovens were addressed. It turns out that for 
applications requiring higher levels of stretch and bend, such as sportswear or the elas-
tic textile sensors in medical applications covered within this review, knitted antennas 
offer potential advantages. The knit geometry imparts the elasticity required for mobility 
and comfort. Since these are near-body applications, the focus is on textile-based micro-
strip patch antennas as they provide adequate shielding from the human body. For these 
antenna topologies, a variety of feeding techniques have already been used (Coaxial 
Feed, Microstrip Line, Proximity Coupling, Aperture Coupling) to achieve the desired 
mechanical and EM performance. Furthermore, various techniques to improve BW have 
been reported.

The conductive fabrics for the patch and ground planes require very low electrical 
surface resistance to minimize electrical losses and thus increase antenna efficiency. 
For the application area mentioned here, the focus is on hybrid conductive threads. The 
structure and key properties have been addressed, allowing wash-resistant, flexible and 
stretchable units to be developed. There are also several methods for connecting tex-
tiles to electronics. They can be divided into non-reversible (Ultrasonic Welding, Resist-
ance Welding, Thermocompression Bonding, Non-Conductive Adhesive Bonding) and 
reversible methods (Snap Fastener).

Abbreviations
BW  Bandwidth
CPW  Coplanar waveguide
EM  Electromagnetic
IoT  Internet of Things
NCA  Non-conductive adhesive
PA  Polyamide
PES  Polyester
RF  Radio Frequency
SAR  Specific Absorption Rate
TL  Transmission line
TPU  Thermoplastic polyurethane
UHF  Ultra high frequency

Fig. 7 Principle of non-conductive adhesive technology using the example of the connected component on 
a ribbon ( © [2022] by Hirman et al. (2022) Reprinted by Permission of SAGE Publications)
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