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Abstract 

Herein, we investigate the effects of 3D printed electrodes on electrophysiological 
signals and identify the important design elements required for manufacturing better 
electrodes for high body adhesion for smart wear. Ten electrodes of different shapes 
(plain, check, stripe, circular, radial cut-out) and thicknesses (0.5 mm and 1.0 mm) were 
manufactured. The electrodes were evaluated by testing on 20 healthy individuals (10 
men and 10 women). To measure the electroencephalogram (EEG) of the participants, 
we used BIOS-S8 (BioBrain Inc., Korea), an 8-channel polygraph for multibody signal 
measurement. Data were analyzed using the SPSS 26.0 statistical program. The EEG 
values were significantly activated according to gender. For the male participants, rela-
tive alpha (RA), relative slow theta (RST), relative mid theta (RMT), and the ratio of SMR-
mid beta to theta (RSMT) values were highly activated and for the female participants, 
RA, relative fast alpha (RFA), and relative slow theta (RSA) values were highly activated. 
There were no significant gendifferences in the EEG of both genders for the 10 types 
of electrodes. However, for the female participants, the ‘RA’ indices showed a signifi-
cant difference based on electrode shape on the right temporal lobe (T4), but there 
was no significant difference based on the thickness. There was a significant differ-
ence in the subjective preference of the electrodes also. In the subjective evaluation, 
it was found that the differences based on the shape and thickness of the electrodes 
were sensitively recognized.

Keywords:  Smart wear, 3D printing, Electrode shape, High body adhesion, 
Electroencephalogram (EEG)

Introduction
In the last decade, Korea’s medical expenses burden has increased the fastest among 
major organization for economic cooperation and development (OECD) countries due 
to an aging society and an increase in chronic diseases, such as hypertension, diabetes, 
and cardiac disorders. Such medical expenses and health concerns have brought public 
attention to healthcare that can manage and prevent the occurrence of diseases (Han 
& Kim, 2020; Jang & Cho, 2019). Therefore, studies on wearable biosignal monitors for 
real-time observation of people’s health and prompt reactions in emergencies are being 
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actively conducted (Ates et al., 2021; Devi et al., 2023; Kim et al., 2019, 2021; Lee & Cho, 
2019; Lu et al., 2020; Sprogis et al., 2019).

Currently, wearable biosignal monitoring is being conducted through devices such 
as smartwatches, smart belts, and smart clothing. In particular, smart clothing mostly 
measures biosignals by connecting sensors with electrodes to clothing. In this case, sen-
sors are highly important for the measurement of stable and precise signals within the 
body, so various crafting methods for such electrodes have been continuously studied 
(Banitaba et al., 2023; Jang & Cho, 2019; Kang et al., 2008; Seoane et al., 2013; Song et al., 
2010; Takagahara et al., 2014; Yapici & Alkhidir, 2017). Electrodes are devices that deliver 
electrical signals from within to the outside of the body by monitoring the potential dif-
ference that occurs because of the many electric fields on the skin. Currently, data are 
obtained by sensing the potential difference of the delivered signal, and various biosig-
nals, such as the electrocardiogram (ECG) and electromyogram (EMG), can be analyzed 
using these data. To date, diverse types of electrodes, such as gel electrodes, metal elec-
trodes, and fiber electrodes, have been used to measure biosignals. Gel electrodes, which 
are mainly used in medical centers, are disposable, require frequent replacement, and 
cause environmental problems. Moreover, they exhibit side effects, such as skin irrita-
tions and itchy skin rashes, when used for long durations; therefore, dry electrodes such 
as metal plates, flat plates, and fiber electrodes have been developed. However, not only 
are metal electrodes hard and cold where they contact the skin, but they also have a low 
adhesive force, making it difficult to obtain biosignals in body areas with high curvature. 
Therefore, many studies have been conducted recently to develop fiber electrodes that 
do not cause discomfort upon contact and are easy to attach to clothing (Lee, 2010; Lee 
& Cho, 2019; Pani et al., 2019). A major problem that occurs when wearing smart cloth-
ing that uses fiber electrodes is that precise and stable biosignals can be obtained in an 
upright posture, but not during active motion as the electrode detaches from the body, 
leading to noise and inaccurate measurement. In addition, when applied to smart cloth-
ing, the wearer may experience discomfort due to sensor contact.

Therefore, electrodes that can measure stable and precise data, as well as enhance 
wearing comfort, need to be developed. For this purpose, studies on the material and 
design of electrodes and their contact with the body (Jang, 2006; Jeong & Yang, 2012; 
Jeong et  al., 2010), the design of electrodes that contact the body (Cho et  al., 2018; 
Cömert et al., 2013; Lee, 2010; Song et al., 2010), and the optimal location of electrodes 
for high adhesion (Cho et al., 2010; Cho & Cho, 2015; Cho & Lee, 2015; Mohindra et al., 
2007; Self et al., 2006; Tysler et al., 2007), etc. are being conducted in the fashion indus-
try. Specifically, Jeong et  al. (2010) suggested an optimal contraction rate and smart 
design for the precise measurement of ECG by applying different contraction rates. Cho 
et al. (2018) confirmed that solid electrodes produce signals of better quality than flat 
electrodes by examining six types of electrodes crafted through a combination of elec-
trode size and composition (flat/solid). Cho and Cho (2015) used body mapping tech-
nology to examine the rate of change of body surface and clothing and suggested that the 
front of the chest and beneath the shoulder blade are the optimal locations for electrodes 
that are least affected by body movement. In previous studies, it was found that the 
design, structure, and location of the electrode had an important influence on obtain-
ing high-quality signals by a resulting increase in the contact surface area by increasing 
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the adhesion between the skin and the electrode, and by reducing the electrical noise. 
However, there are no studies on applying the electrode structure to smart clothing by 
modifying the electrode structure; in particular, there is no research that we know of 
on the development of an electrode shape with high adhesion to the body by applying 
3D printing. Moreover, few studies have objectively analyzed the effect of electrode sen-
sors on overall comfort. Therefore, a 3D printed electrode structure with high adherence 
and comfort upon contact needs to be developed for the precise measurement of biosig-
nals, and the subtle differences must be effectively verified. Such subtle differences while 
wearing functional clothing have been recently detected using physiological signals such 
as brain wave electroencephalogram (EEG) and electrocardiogram (ECG) (Bang & Kim, 
2012; Jeong & Kim, 2009; Krzemińska et  al., 2023; Lee & Lee, 2021; Lee et  al., 2019). 
These brain waves are signals that reflect physiological responses and psychological sta-
tus and respond immediately upon external stimuli, allowing the analysis of comfort 
sensation that is swiftly changing (Han & Chun, 2019).

Therefore, in this study, in order to develop a 3D printed electrode structure with 
excellent adhesion and contact sensation that can be applied to smart wear, various types 
of electrode sensors were attached to the skin and EEG measurements and subjective 
sensation evaluation were conducted. At this time, by analyzing men and women who 
have differences in the sense of external stimuli, we attempted to find a form of electrode 
sensor with excellent adhesion and comfort sensation according to gender, and provided 
fundamental data so that this could be used when designing fabric electrode sensors.

Methods
Participants

Twenty healthy adults in their twenties (10 males and 10 females) without a brain or 
cognition-related disease and medical history were selected to participate in this experi-
ment. Based on previous research (Lee, 2016, 2020; Lee & Lee, 2020a, b), there are 
statistically significant differences in tactile sensation with respect to gender among 
demographic characteristics. Therefore, in this study, we divided the participants into 
male and female groups for experimentation and analysis. The experimental procedures 
related to subjective evaluation and EEG measurements were explained to them before 
the experiment, and consent forms were signed by all participants. The experimental 
procedure was approved by the Institutional Review Board (IRB) (No. 202106-HR-013-
01). Moreover, all participants were given ample sleep the day before the experiment and 
banned from consuming alcohol, caffeine, medicine, prohibited from excessive exercise 
to reduce interference with the nervous system. On the day of the experiment, partic-
ipants were excluded from the experiment if their health and fatigue conditions were 
abnormal to minimize the effect of physical conditions related to concentration. The 
characteristics of the participants’ bodies are shown in Table 1, body mass index (kg/m2) 
and total body fat (%) were measured using InBody (Inbodyco., Ltd., Korea).

Experimental electrodes and evaluation of flexural modulus

The electrode sensors for measuring biosignals used in this experiment were designed 
considering various motions and three-dimensional human body shapes. Two types 
of thicknesses (0.5 and 1 mm) and five shapes (plain, check, stripe, circular, and radial 
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cut-out) were combined, totaling ten types. Based on the preliminary experiments, we 
chose 0.5  mm and 1.0  mm as thickness variables because they allowed for successful 
printing while maintaining good adhesion.

The 3D printed electrode sensors used in this experiment were circular with a diame-
ter of 40 mm, with a circular hole of 4 mm diameter at the center of the base type (plain), 
while the other four types (check, stripe, circular, and radial cut-out) retained the same 
outer 40  mm circle but the inner shapes were varied. Moreover, the thickness of the 
electrode sensors was 0.5 mm and 1.0 mm for each shape. The plain type uses the origi-
nal circle of 40 mm diameter, the check type has horizontal and vertical 1 mm grooves 
at 5 mm intervals, and the stripe type has horizontal 1 mm grooves at 5 mm intervals. 
The circular type has four small holes with a 2  mm diameter at 2  mm intervals on a 
radial shape every 45°, and the radial cut-out has cuts of 2 mm width 2 mm away from 
the center of the circle at 45° intervals. The electrode sensors were modeled using the 
Geomagic Design X program (3D Systems, Inc., Korea), and were 3D printed using a 3D 
printer (CUBICON Single Plus 3DP-310F) and Cubicreator Program. An FDM-type 3D 
printer was used, and the printing directory was confirmed and saved via G-code using 
the view mode of slicing software before printing. As the printing material selected TPU 
because it has been evaluated to offer superior flexibility, recovery, durability, and ther-
mal comfort compared to other non-breathable materials commonly used in recent sen-
sor applications (Jung & Lee, 2022; Lee et al., 2022). The printing conditions were set as 
100% inner density, discharge temperature of 230 °C, bed temperature of 65 °C, printing 
speed of 15–30 mm/s, and layer height of 0.15 mm for better printing quality. Experi-
mental samples were crafted as shown in Fig. 1b, and the experiment was carried out.

Table 1  Physical characteristics of participants (N = 20)

Participants Age (years) Height (cm) Weight (kg) Body mass 
index (kg/m2)

Total body fat (%)

Male

 Mean (SD) 21.80 (1.01) 176.60 (4.12) 70.23 (6.28) 23.7 (1.86) 21.9 (3.18)

Female

 Mean (SD) 21.50 (0.98) 162.25 (3.97) 52.05 (5.82) 20.1 (3.85) 23.1 (4.79)

Fig. 1  3D modeling results and produced experimental samples
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Flexural modulus refers to stiffness or softness, and it is a critical factor not only for 
evaluating flexibility but also for adhesion to the skin. Therefore, the flexural modulus 
of the electrode sensors was analyzed in this experiment. The experimental method and 
crafting of the samples were carried out following ASTM D 790-99, the testing stand-
ard for curvature evaluation of unreinforced material and plastic. Sample sizes were 
127 × 12.7 × 5  mm and 127 × 12.7 × 10  mm, span length was 80  mm, and the descent 
rate of crosshead was 2.1 mm/min for three-point bending evaluation. The flexural mod-
ulus for the ten sensors is shown in Table  2, and it differs according to sensor thick-
ness and shape, with plain type displaying the highest flexural modulus for 5 mm thick 
sensors followed by circular, radial cut-out, and check and stripe types. Meanwhile, the 
circular type had the highest flexural modulus for the 10 mm sensors followed by plain, 
radial cut-out, check, and stripe types. The sensors with lower flexural modulus are 
more flexible, meaning that check and stripe types were the most flexible for both thick-
nesses. In addition, the flexural modulus was greater for the 10 mm sensors than for the 
5 mm sensors for all types of sensors. This concurs with the results that flexural modulus 
increases with thickness (Lee & Lee, 2020a, b), and confirms the reduction in flexibility 
as the thickness increases.

Experimental equipment and procedure

Electroencephalography according to the adhesion of each electrode sensor was 
recorded using an eight-channel data acquisition system BIOS-S8 (BioBrain Inc., Dae-
jeon, Korea). As shown in Fig. 2 (Lee & Lee, 2021), electroencephalography was meas-
ured at seven locations according to the International 10–20 System (Jasper, 1958): F3 
(left hemisphere, frontal lobe), F4 (right hemisphere, frontal lobe), T3 (left hemisphere, 
temporal lobe), T4 (right hemisphere, temporal lobe), O1 (left hemisphere, occipital 
lobe), O2 (right hemisphere, occipital lobe), and Cz (crown). The reference electrode at 
A1 was attached behind the left earlobe, and the ground electrode was attached to the 
forehead.

The EEG signals were digitized at a sampling frequency of 250 events/s (250 Hz). The 
relevant frequencies were filtered using a time-series biosignal data analysis program 
(BioScan, BioBrain), and EEG rhythm data were recorded in the frequency domains. 
Spectrum values, which reflect the quantitative value of the EEG rhythm, were then 
calculated. The EEG was batch-analyzed using an analysis program on indices defined 
according to wavelength (Kim, 2016), including the relative theta power spectrum(RT), 
relative alpha power spectrum (RA), relative beta power spectrum (RB), relative gamma 

Table 2  Flexural modulus of experimental electrodes (unit: MPa)

Shape Thickness

5 mm 10 mm

Plain 53.58 78.84

Check 10.74 15.80

Stripe 10.50 12.04

Circular 46.34 84.28

Radial cut-out 34.18 47.00
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power spectrum (RG), relative fast alpha power spectrum (RFA), relative slow alpha 
power spectrum (RSA), relative low beta power spectrum (RLB), relative mid beta power 
spectrum (RMB), relative high beta power spectrum (RHB), the ratio of the sensorimo-
tor rhythm (SMR) to theta (RST), ratio of mid-beta to theta (RMT), ratio of SMR-mid 
beta to theta (RSMT), and ratio of alpha to high-beta (RAHB). The frequency range of 
each index is listed in Table 3. To reduce individual differences in the EEG analysis index 
(Suh et al., 2011), 91 values (7 measurement locations × 13 analysis indices) were ana-
lyzed by subtracting the basal EEG value from the experimental EEG.

The experimental procedures are set with reference to previous studies (Choi et al., 
2014; Lee & Cho, 2015; Lee & Lee, 2020a, b; Park & Lee, 2021), and was shown in 

Fig. 2  EEG measurement locations

Table 3  Analysis indices for the EEG

Abbreviation Full terminology Frequency range

RT Relative Theta Power Spectrum (4–8 Hz)/(4–50 Hz)

RA Relative Alpha Power Spectrum (8–13 Hz)/(4–50 Hz)

RB Relative Beta Power Spectrum (13–30 Hz)/(4–50 Hz)

RG Relative Gamma Power Spectrum (30–50 Hz)/(4–50 Hz)

RFA Relative Fast Alpha Power Spectrum (11–13 Hz)/(4–50 Hz)

RSA Relative Slow Alpha Power Spectrum (8–11 Hz)/(4–50 Hz)

RLB Relative Low Beta Power Spectrum (12–15 Hz)/(4–50 Hz)

RMB Relative Mid Beta Power Spectrum (15–20 Hz)/(4–50 Hz)

RHB Relative High Beta Power Spectrum (20–30 Hz)/(4–50 Hz)

RST Ratio of SMR to Theta (12–15 Hz)/(4–8 Hz)

RMT Ratio of Mid Beta to Theta (15–20 Hz)/(4–8 Hz)

RSMT Ratio of (SMR–Mid Beta) to Theta (12–20 Hz)/(4–8 Hz)

RAHB Ratio of Alpha to High Beta (8–13 Hz)/(20–30 Hz)
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Fig.  3. EEG measurements according to electrode sensor type were conducted in a 
laboratory set at room temperature of 23 ± 2  °C and relative humidity of 50 ± 5%. 
After entering the laboratory, the participants were briefed on the overall experi-
mental procedure and cautions. After a 10  min break, participants sat comfortably 
in a chair to reduce noise in the EEG data and were fitted with special fabric caps 
to which EEG electrodes had been attached (BIOS_Dry_8, Biobrain, Daejeon). First, 
Base EEG in the relaxed state was measured for 1 min without attaching experimen-
tal electrode. Then experimental electrode was placed on the brachioradialis, both 
ends of the experimental electrode were pressed with the thumb and index fingers of 
the right hand to attach the experimental electrode to the brachioradialis, and then 
the EEG was measured for 1 min. The data used excluded the first and last ten sec-
onds of the measurement duration. After measuring the EEG, subjective evaluation 
was conducted using four questions on “skin adhesion,” “feeling of contact,” “flexibil-
ity,” and “overall comfort,” and was conducted using a 7-point Likert scale ranging 
from 1 point for “strongly disagree” to 7 points for “strongly agree.” Afterward, a min-
ute break was given. The electrode sensors were placed on the participants using an 
altered Latin square design to minimize the effect of ordering.

Data analysis

All measured data were statistically processed using SPSS 26.0 (IBM, New York, USA). 
T-tests of individual samples were utilized to analyze differences in EEG indices accord-
ing to gender, and ANOVA and Duncan post-hoc tests were conducted to analyze differ-
ences in EEG indices according to the ten types of electrodes. Additionally, correlation 
was conducted to examine the relationship between EEG indices value data and subjec-
tive evaluation data. Significance was set at p < 0.05.

Results and discussion
EEG changes upon attaching electrodes according to gender

To examine whether the sensor causes discomfort and irritation when the developed 
electrode sensor is closely attached to the skin, changes in the EEG index according to 
the presence or absence of contact with the electrode sensor were analyzed. As shown in 
Table 4, 18 EEG values showed a statistically significant difference (p < 0.05). Significant 
differences were extracted from the frontal lobe (F), temporal lobe (T), and crown (Cz), 
and the indices were relative alpha (RA), relative fast alpha (RFA), relative gamma (RG), 
relative slow theta (RST), relative mid theta (RMT), and the ratio of SMR-mid beta to 
theta (RSMT).

Fig. 3  Experimental protocol
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Firstly, when analyzing the results of RA, RFA, RSA, and RG, as can be seen in the 
Table 4, RA, which signifies rest, RFA, which signifies calmness and concentration, and 
RSA, which represents relaxation are more activated for women compared with men. 
Specifically, areas of activation were the frontal lobe of the right hemisphere (F4) and 
the temporal lobe of the right hemisphere (T4) for RA, the crown (Cz) for RFA, and the 
frontal lobe (F3, F4) and crown for RSA. Generally, alpha waves are generated in a com-
fortable state (Lee, 2014), implying that women feel relaxed when electrode sensors are 
placed and pressed on the skin. Meanwhile, the RG index decreased at the temporal lobe 
of the left hemisphere (T3) and crown (Cz) for women. The RG index, which signifies 
a high level of cognition, anxiety, and stress, is deemed preferable when lower, mean-
ing that pressing the electrode sensor on the skin reduced cognitive pressure and stress, 
enhancing comfort. These results are consistent with the research results (Park & Lee, 
2021) that wearing partially functional compression pants inside a wearable robot helps 
to reduce gamma waves that provide tension, arousal, excitement, and anxiety.

In conclusion, the activation of alpha and gamma waves differed according to gender, 
as the electrode sensors developed for measuring biosignals were pressed on the skin. In 
particular, female participants did not feel discomfort due to the sensors and suggested 
possibilities of reduction in anxiety, stress, and tension as well as an increase in comfort.

Meanwhile, the RST, RMT, and RSMT indices that correlate with concentration are 
higher in males than in females. Specifically, the RST index was highly active in the fron-
tal lobe of the left hemisphere (F3) and the temporal lobes of both hemispheres. RMT 
and RSMT indices showed that male theta waves were highly active in the frontal lobe of 
the left hemisphere(F3), temporal lobe of the right hemisphere(F4), and the crown(Cz), 

Table 4  T-test results of changes in EEG indices according to gender to contact with electrode 
sensor

* P < 0.05, **P < 0.01, ***P < 0.001

EEG index_sensor position Men Women t
Mean (SD)

RA_F4 − 0.021 (0.06) 0.001 (0.02) − 3.579***

RA_T4 − 0.029 (0.15) 0.025 (0.08) − 3.046**

RFA_Cz − 0.002 (0.02) 0.005 (0.01) − 2.460*

RSA_F3 − 0.007 (0.04) 0.004 (0.02) − 2.436*

RSA_F4 − 0.017 (0.04) 0.001 (0.01) − 4.295***

RSA_Cz − 0.018 (0.04) 0.006 (0.01) − 5.583***

RG_T3 0.005 (0.03) 0.006 (0.04) 2.277*

RG_Cz 0.003 (0.03) 0.005 (0.03) 2.078*

RST_F3 0.011 (0.15) − 0.051 (0.17) 2.784*

RST_T3 0.034 (0.14) − 0.068 (0.17) 4.653***

RST_T4 0.030 (0.15) − 0.046 (0.12) 4.037***

RMT_F3 0.007 (0.18) − 0.090 (0.30) 2.757*

RMT_T3 0.028 (0.18) − 0.113 (0.27) 4.442***

RMT_T4 0.044 (0.21) − 0.062 (0.13) 4.259***

RMT_Cz 0.017 (0.20) − 0.055 (0.20) 2.465*

RSMT_F3 0.018 (0.33) − 0.141 (0.46) 2.806*

RSMT_T4 0.075 (0.35) − 0.108 (0.24) 4.280***

RSMT_Cz 0.035 (0.35) − 0.073 (0.34) 2.214*
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confirming clear differences based on gender. Therefore, it was shown that males tried to 
respond to each electrode sensor at a higher concentration, and females participated in 
the experiment with less tension and stress.

EEG changes according to electrode sensor types

As the previous statistical results showed a difference in EEG according to gender, fur-
ther analysis was performed on each gender group to determine whether there was a 
difference in EEG according to the sensor type (10 types). Males showed no statistical 
difference in EEG according to the sensor type. Contrarily, females showed no significant 
difference according to the electrode sensor thickness (2 types), but there was a signifi-
cant difference in EEG values according to the electrode sensor shape (5 types) (p < 0.05). 
As shown in Fig. 4, the index shows a significant difference in the RA index, indicating 
stability and rest, and the alpha value shows high levels of activation in the temporal lobe 
of the right hemisphere (T4).

On comparing the results based on the shape of the electrode sensor, there were differ-
ences in the RA index for plain, check, radial cut-out, and circular shapes. Upon closer 
inspection, the subjects who participated in the experiment recognized the differences 
between plain and check, plain and circular, check and radial cut-out, and check and 
circular among the five electrode types. That is when the sensor type check was placed 
on the brachioradialis (horizontal radius of curvature 3.36  cm, vertical radius of cur-
vature, 15.55 cm) of the participants the difference could be detected, and the average 
value was significantly higher than when plain, radial cut-out, and circular were placed. 
Furthermore, when the electrode sensor type check was placed on the brachioradia-
lis, it adhered tightly to the skin and thus was more comfortable than other electrode 
types. This is because the check shape has a grid-shaped groove and can be bent in vari-
ous directions up, down, left, and right, and can be deformed to suit the curvature of 
the body. The results of this study concur with that of a study that showed that softer 
and less stiff materials increase the alpha wave, relieving tension and providing com-
fort (Lee, 2014). This is also consistent with the research (Cho, 2006) that alpha waves 
increase when positive stimuli are presented, and therefore, it can be interpreted that the 
tight adhesion and flexibility of the check helps to increase comfort. In addition, in the 

Fig. 4  Differences in RA index among electrode sensor types on T4 position
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subjective evaluation (Table 7), Check type showed the highest adhesion to skin, flexibil-
ity, and good contact, as well as the highest overall comfort. Subjective sense recognized 
Check electrode sensors as a positive stimulus, and it is considered to have increased 
alpha waves. The adhesion of the sensor was found to be more affected by the shape than 
the thickness of the electrode.

Subjective evaluation according to electrode types

An analysis was conducted on the subjective evaluation results of men and women 
according to contact with the electrode sensor. As shown in Table  5, three subjective 
evaluations of “skin adhesion,” “feel on contact,” and “overall comfort” except for “flex-
ibility” show significant differences (p < 0.05). Specifically, in the “skin adhesion”, “feel on 
contact,” and “overall comfort” items, women showed higher average values than men. 
It can be interpreted that when the electrode sensor was placed on the skin, women felt 
that it had excellent skin adhesion, good contact, and generally felt more pleasant. That 
is, in the subjective evaluation, women responded more sensitively and positively to the 
adhesion of the electrode sensor compared to men.

Thereafter, ANOVA was used to examine the difference in subjective evaluation 
according to the type of electrode for each male and female, a statistically significant 
difference was found (p < 0.05), as shown in Tables 6 and 7, respectively. Specifically, we 
found that there were significant differences in the subjective evaluation items of skin 
adhesion, feel on contact, flexibility, and overall comfort for both men and women. 
When the thickness of the electrode sensor was thin (0.5 mm), the average value for all 
subjective evaluation items was high for both men and women.

In particular, for women, as recorded in Table  6, there was a significant difference 
according to the shape of the electrode sensors. For skin adhesion, plain, check, and 
stripe types (0.5 mm) were evaluated as excellent with a score of at least 6.1. In addi-
tion, the feel on contact, flexibility, and overall comfort were evaluated as excellent for 
the 0.5 mm check shape. These results were evaluated in the same manner as the EEG 
results. In the case of the circular shape, the subjective evaluation and brain wave results 
were evaluated as the worst regardless of the thickness.

Conversely, as shown in Table 7 for male evaluations, 0.5 mm plain and check types 
have the best adhesion, 0.5  mm plain and stripe types have the best feel on contact, 
0.5 mm check type the best flexibility, and 0.5 mm plain for best overall comfort; the 
preference for a 1.0  mm circular type was low. In conclusion, the 0.5  mm check and 
stripe types, which were highly preferred by both males and females, had a flexural 
modulus value of 10.7 MPa, 10.5 MPa by objective measurement. This was lower than 

Table 5  T-test results of subjective evaluation according to gender to contact with electrode sensor

* P < 0.05, **P < 0.01

Subjective evaluation items Men Women t
Mean (SD)

Skin adhesion 4.39 (1.77) 5.18 (1.50) − 3.406**

Feel on contact 4.80 (1.29) 5.38 (1.20) − 3.291**

Overall comfort 4.76 (1.33) 4.98 (1.30) − 1.180*
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the values for the other electrode types (34.2–53.6 MPa). This indicates that the check 
and stripe types possess softer and more flexible properties than other forms, and it is 
deduced that these characteristics are directly connected to subjective senses, as shown 
in the responses.

Correlation between EEG changes and subjective evaluation according to electrode sensor 

types

To determine the relationship between EEG changes and subjective evaluation of elec-
trode sensors, correlation analysis was conducted according to gender. As a result, as 
shown in (Table  8), in the female group, there was a statistically significant difference 
between RA index in the right hemisphere temporal lobe area (T4) and subjective eval-
uation items (skin adhesion, feel on contact, flexibility, and overall comfort) according 
to electrode sensor shape (5 types). That is, in the case of the female group, when the 
electrode sensor was in the ‘Check’ form, the RA index in the right hemisphere tem-
poral lobe (T4) and the subjective evaluation items ‘skin adhesion’ (r = 0.275, p < 0.01), 
‘feel on contact’ (r = 0.221, p < 0.01), ‘flexibility’ (r = 0.185, p < 0.05), and ‘overall comfort’ 
(r = 0.262, p < 0.01), it was found that there was a positive correlation between them. In 
other words, it was found that when the type of electrode sensor was ‘Check’, ‘skin adhe-
sion’, ‘feel on contact’, ‘overall comfort’ were excellent, it was flexible, and the brain wave 
value of ‘RA’ was highly activated. On the other hand, in the male group, there was no 
statistically significant correlation between EEG values and subjective evaluation items 
according to electrode sensor type.

Table 8  Correlation between EEG changes and subjective evaluation of females according to 
electrode sensor types

* P < 0.05, **P < 0.01

RA_T4 
(Plain)

RA_T4 
(Check)

RA_T4 
(Stripe)

RA_T4 
(Radial 
cut-out)

RA_T4 
(Circular)

Skin 
adhesion

Feel on 
contact

Flexibility Overall 
comfort

RA_T4 
(Plain)

1

RA_T4 
(Check)

− 0.312* 1

RA_T4 
(Stripe)

− 0.235 0.228 1

RA_T4 
(Radial 
cut-out)

0.218 − 0.419* − 0.249 1

RA_T4 
(Circular)

0.435* − 0.523* − 0.252 − 0.267 1

Skin 
adhe-
sion

0.134 0.275** 0.188 0.082 0.056 1

Feel on 
contact

0.150 0.221** 0.189 0.164 0.081 0.739** 1

Flex-
ibility

0.034 0.185* 0.136 0.165 0.053 0.581** 0.535** 1

Overall 
comfort

0.092 0.262** 0.150 0.093 0.035 0.757** 0.765** 0.590** 1
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Conclusions
In this study, it was analyzed the effects of electrodes for measuring biosignals manufac-
tured in different shapes and thicknesses through EEG and subjective sensory evaluation 
using neurophysiological evaluation methods. it was found that the activated EEG index 
was different according to gender. Therefore, it is considered that it would be more effi-
cient to design the electrodes differently for genders developing the electrodes because 
biosignals measured for men and women have different EEGs, even if they are the same 
electrode. Also, in the EEG change according to the type of electrode(shape and thick-
ness), in the case of women, there was a significant difference according to the shape of 
the electrode, but no significant difference according to the thickness of the electrode. 
Therefore, the shape of the electrode is the most important factor to consider in manu-
facturing electrodes to minimize the inconvenience caused by the electrode sensor and 
comfortably measure biosignals in daily life. it was confirmed that the subjective sensory 
evaluation showed sensitivity to all types of electrodes and recognized their differences. 
Herein, a new attempt was made for meaningful product evaluation by developing 3D 
printed electrode structures with excellent contact comfort and analyzing its effect 
through EEG. These results can be utilized in the development of various smart clothing, 
and are expected to reduce the wearer’s discomfort from contact with sensors. However, 
this study concluded by testing electrode design for better adhesion and overall comfort 
in 20 individuals in their twenties. Further studies on electrode design with various age 
groups and more test participants are required to reach an optimal design. Additionally, 
in this study, the effect of the electrode sensor was verified in only one brachioradialis 
location in the stationary state. In follow-up studies, it would be necessary to observe 
various body parts with different curvatures and changes during various movements. 
These results are expected to be utilized to develop a fabric-type electrode that reflects 
the optimal electrode shape, and it would be possible to develop an integrated fabric-
type smart clothing that can acquire high-quality biosignals without time and space 
constraints.
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