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Introduction
Cyclodextrins (CDs) are doughnut-shaped oligosaccharides consisting of α(1,4)-linked 
glucopyranose. Due to their amphiphilicity, CDs are expected to be applied in many 
areas such as drug delivery, chromatography, selective removal and solubility enhance-
ment (Araki and Ito 2007; Del Valle 2004; Giuffrida et  al. 2006; Hedges 1998; Naidoo 
et al. 2004; Szejtli 1998).

Cyclodextrins are found as many different forms depending on the number of glucose 
units. Three of the most important cyclodextrins are α-, β-, and γ-CDs which are con-
sisting of 6, 7 and 8 glucose units, respectively. Among them, β-CD takes more atten-
tions due to its relatively simple manufacturing process and high productivity (Del Valle 
2004). As a carrier of antibacterial agent or drug, β-CD is one of the most effective mate-
rials. Sun et  al. (2011) studied the in  vitro antibacterial activity of cyclodextrin-drug 
complexes using β-cyclodextrin and 2-hydroxypropyl β-cyclodextrin. The complexation 
of the antibacterial drug with the CDs improved the antibacterial activity by steady-state 
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In the study, we successfully produced electrospun cellulose fibers crosslinked with 
β-CD. For electrospinning, cellulose was dissolve in 1-ethyl-3-methylimidazolium ace-
tate and DMF was added to the prepared solution for better spinnability. The prepared 
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sodium hypophosphite. In order to understand the effect of a crosslinking agent, two 
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the cross-linking agent was higher than 5 wt%. The concentration of crosslinking agent 
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release of the drug. While the cyclodextrin–drug complexes were still studied by many 
researchers, the antibacterial activity of pure β-CD itself has not been intensively 
investigated.

Recently, many researchers are interested in β-CD nanofiber because it can dramati-
cally improve desirable properties by increase of the specific surface area (Fong et  al. 
1999; Huang et al. 2003; Li and Xia 2004; Li et al. 2005; Schiffman and Schauer 2008; 
Zhang et  al. 2005). However, the molecular interactions of small molecules including 
β-CD are not strong enough to prevent stream breakage in uniaxial deformation during 
spinning. In order to produce nanofiber, β-CD needs to be mixed with carrier polymers 
such as PEO (Uyar and Besenbacher 2009), PAN (Wang et al. 2012), PMMA (Uyar et al. 
2010), PVA (Zhang et al. 2011) etc. The mixed solutions were successfully electrospun 
into sub-micron size fibers. However, this method has several drawbacks with respect to 
processing and performance. The first drawback is difficult to select an optimal solvent 
which can dissolve both polymer and β-CD with proper concentration. The polymer also 
needs to be thermodynamically comparable with β-CD in order to guarantee good spin-
nability. Plus, it is difficult to control the location of β-CD on the fiber surface for better 
functionality.

Recent researches showed the possibility that small molecules such as phospholipid 
and gemini surfactant could be electrospun into nanofiber when the molecules have 
entangled micelle networking (Cashion et  al. 2009; McKee et  al. 2006). The strong 
hydrogen boding induced by many –OH groups in β-CD make the molecules possible 
to form networking structure similarly to phospholipid and gemini surfactant. How-
ever, comparing to α- and γ-CDs, β-CD has very poor solubility in conventional solvents 
due to the local water held in the cavity and around the molecules (Naidoo et al. 2004). 
The local water makes β-CD rigid macro-cyclic compound, which is not easily accom-
modated into conventional solvent system (Naidoo et al. 2004). This poor solubility of 
β-CD did not allow the direct dissolution for electrospinning. To improve the solubility, 
the external hydrophilic groups are chemically modified into hydrophobic groups such 
as hydroxypropyl and methyl groups (Celebioglu and Uyar 2010, 2011, 2012; Manasco 
et al. 2012). The modified CD showed better solubility and successfully electrospun into 
nanofiber. Recently our research group reported direct dissolution of unmodified β-CD 
using ionic liquid and successful electrospinning of the prepared solution (Ahn et  al. 
2013). However, the electrospun β-CD was mechanically weak and brittle for further 
applications.

To overcome the weaknesses of the two methods (spinning with carrier polymer and 
direct spinning), we cross-linked β-CD on the surface of electrospun cellulose fiber. The 
cross-linked fiber is mechanically acceptable and has selective anti-bacterial properties, 
which would be beneficial for biomedical applications due to its biocompatibility as well 
as biodegradability.

Methods
Materials

β-CD (Mw 1,134.99, purity >95%) was purchased from Tokyo Chemical Industry Com-
pany (Japan). Cellulose (DP 1100) for the study was obtained as powder from Hyosung 
Co. (Korea). Ionic liquid (1-ethyl-3-methylimidazolium acetate) and dimethylformamide 
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(DMF) were purchased from BASF (Germany) and Daejung Chemicals & Metals Co. 
(Korea), respectively. 1,2,3,4-butanetetracarboxylic acid (BTCA, 98%), citric acid 
(>99.5%) and sodium hypophosphite (>98%) were purchased from Sigma-Aldrich. All 
chemicals and materials were used without further purification.

Electrospinning

The solutions for electrospinning were prepared by dissolving cellulose in the ionic liq-
uid. The concentration of cellulose was kept as 12 wt%. DMF was added to the solution 
to improve the spinnability (Ahn et al. 2012). The ratio of ionic liquid to DMF was fixed 
at 5:5.

The prepared solutions were electrospun using a syringe type electrospinning appa-
ratus on to a rotating wired cylinder. The tip was a 20 G stainless steel needle having 
0.60 mm inner diameter. In the all experiments, the applied voltage and TCD (tip-do-
collector distance) were 30  kV and 15  cm, respectively. The air pressure was fixed as 
0.1 MPa.

The electrospun cellulose was immersed in ethanol at 4°C for 2 h to remove ionic liq-
uid and DMF. The coagulated fiber was dried at ambient condition for a day.

Crosslinking

1,2,3,4-butanetetracarboxylic acid or citric acid was used for cross-linking. The prepared 
cellulose fiber was immersed in the solution containing β-CD, crosslinking agent and 
sodium hypophosphite. In order to understand the effect of the crosslinking agent on the 
fiber properties, experiments were carried out under the conditions shown in Table 1. 
All impregnated samples were pre-dried at 90°C for 20  min and then cross-linked at 
180°C for 10 min. The cross-linked fibers were rinsed with distilled water and dried at 
room temperature.

Characterizations

The morphologies of the electrospun fibers were observed using scanning electron 
microscopy (FE-SEM S-4700, Hitachi, Japan). The cross-linking in the fibers were 
examined using FT-IR (FT-IR, Nicolet 6700, USA) with ATR Acc. (window ZnSe/dia-
mond). The numbers of scanning, resolution and wavenumber range were 32, 8 and 
1,200–1,800  cm−1, respectively. X-ray diffraction (XRD) patterns were obtained using 
High Resolution XRD (Ultima IV, Rigaku, Japan) to investigate the micro-structure. The 
basis for the equation of the crystallinity degree was calculated using a computer pro-
gram (ProFit V1.0, Philips Electronics N.V, Netherlands). The thermal properties were 

Table 1  Solution preparation conditions

CD (wt%) BTCA (wt%) CA (wt%) Catalyst (wt%)

5 2 – 1.5

5 5 – 1.5

5 8 – 1.5

5 – 2 1.5

5 – 5 1.5

5 – 8 1.5
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evaluated by TGA (Q500, TA Instruments, USA). The TGA curves were obtained under 
a nitrogen atmosphere at a heating rate of 10°C/min until 600°C.

Antibacterial susceptibility test

The bacterial strains used in this study, Staphylococcus aureus KCTC 1621 (Gram posi-
tive) and Escherichia coli KCTC 1682 (Gram negative) were obtained from the Korean 
Collection for Type Culture (KCTC; Daejeon, Korea). After the pre-cultured bacteria cell 
for 18 h was adjusted according to 0.5 McFarland standards, the bacteria cell was spread 
onto Nutrient broth agar in a Petridish (Cauwelier et al. 2004; Pervin et al. 2012). The 
cross-linked cellulose web was cut into 10 mm squares and was located on the petridish. 
The petridish was incubated at 37°C for 24 h and the bacterial activity was observed.

Results and discussion
FT‑IR spectroscopy

Figure  1 shows the FT-IR spectra of the cellulose fibers before and after β-CD cross-
linking. The cross-linked fiber showed a characteristic peak at 1,727 cm−1, which is cor-
responding to C=O stretching vibration mode of an ester bond (Medronho et al. 2013; 
Reddy and Yang 2010; Yang et al. 2010). It suggests that the carboxylic acid of the agent 
was successfully cross-linked the β-CD with the cellulose nanofiber by ester bonding 
(Medronho et al. 2013).

The characteristic peak (1,727 cm−1) was increased as the concentration of the cross-
linking agent increased. For the case of citric acid, the peak was slightly increased with 
the concentration of citric acid. For the case of BTCA, however, the peak was consider-
ably increased with the acid concentration and was larger comparing to the citric acid 
case at higher concentration. This indicates that BTCA is more effective for cross-link-
ing than citric acid, which is coincident to the result of previous studies (Chung et al. 
1998; El-Tahlawy et al. 2005).

Morphology

Figure  2 shows the SEM images of the pristine and the cross-linked cellulose fib-
ers. When the concentration of cross-linking agent was low, the morphologies of the 

Figure 1  FT-IR spectra of electrospun and crosslinked cellulose fibers.
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cross-linked cellulose fibers were similar to the pristine cellulose fiber regardless of the 
cross-linking agent types. As the concentration of the cross-linking agent increased over 
5 wt%, the membrane-like shape started to appear. The further increase of the agent con-
centration resulted in film-like web morphology. This morphology change was similarly 
was observed in other researches (Chen et al. 2012; Liu et al. 2007).

Microstructure

Figure 3 shows the XRD spectra of the pristine and the cross-linked cellulose fibers. The 
degree of crystallinity was calculated from the following equation and summarized in 
Table 2.

As shown in Table 2, the crystallinity was decreased as the concentration of the cross-
linking agent increased. When cellulose was cross-linked with β-CD, the intermolecular 

Degree of Crystallinity (%) =
Intensity of Crystalline scattering

Total Scattering Intensity
× 100

Figure 2  SEM images of electrospun and crosslinked cellulose fibers.

Figure 3  XRD spectra of electrospun and crosslinked cellulose fibers.
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hydrogen bonding became weaker because of the substitution of hydroxyl group with 
β-CD. At the same time, the cellulose chain-to-chain distance increased due to the 
attached molecules. As a result, the more cross-linked cellulose showed lower crystallin-
ity due to the higher concentration of the crosslinking agent.

Thermal property

Figures 4 and 5 show the TGA and DTG curves of the pristine and the cross-linked cel-
lulose fibers. The types of the cross-linking agents did not show critical influence on 
the thermal stability of the resulted fibers. The cross-linked fibers decomposed in lower 
temperature than the pristine cellulose fiber. The poor thermal stability might be caused 
by molecular degradation during the cross-linking process. Although we did not pro-
vide the experimental results, it is well known the acidic crosslinking agent could cause 
the acid hydrolysis of cellulose and in turn resulted in low molecular weight. The crys-
tallinity might also influence on the thermal stability of the resulted fibers. The fiber 
with lower crystallinity due to higher crosslinking showed lower thermal stability. As 
explained in other literature (Ahn et  al. 2013), low crystalline polymers are thermally 
unstable due to low chain-to-chain interaction.

Antibacterial susceptibility

The antibacterial activities of the pristine and the cross-linked fibers were investigated by 
comparing of the β-CD fiber prepared in the previous study (Ahn et al. 2013). The β-CD 
fibers and cross-linked cellulose fibers with citric acid showed antibacterial activities on 
the Gram positive bacteria, Staphylococcus aureus as shown in Figure 6. The β-CD fibers 
showed better antibacterial activity comparing to the other fibers. The doughnut-shaped 
chemical structure and many hydroxyl groups of β-CD made stronger bonding with bac-
teria than cellulose.

As shown in the figure, the antibacterial effect toward Gram positive S. aureus was 
observed with the increase of citric acid concentration. However, when the cross-linked 
cellulose fibers with BTCA were applied, no effect has been noticed on the tested bac-
terial strain. Especially, in the case of Gram negative bacteria, E. coli, no antibacterial 
activity effect was observed on most cellulose fibers. Although it is still not known why 
the this difference in the antibacterial susceptibility was originated, the result may be 
due to the difference in release rate of toxic materials (i.e. cross-linking agents) form the 
fabric, differences of membrane structure of bacterial strains, or susceptibility against 

Table 2  Degree of crystallinity

Sample Degree of crystallinity (%)

Cellulose 75

BTCA 2 wt% 55.7

BTCA 5 wt% 37.5

BTCA 8 wt% 36.5

CA 2 wt% 56.2

CA 5 wt% 44.0

CA 8 wt% 29.9
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antibacterial materials released from the fabric (Gupta 2011; Kim et  al. 1997; Orhan 
et al. 2009).

Conclusion
β-CD was successfully cross-linked with electrospun cellulose fibers using BTCA and cit-
ric acid. As the concentration of crosslinking agent increased, more β-CD was cross-linked 
with the cellulose fiber. It resulted in lower crystallinity due to β-CD cross-linked to cel-
lulose and smaller secondary bonding between the polymer chains. The cross-linked fibers 
show selective antibacterial effect according to type of cross-linking agent and bacteria.

Figure 4  TGA curves of electrospun and crosslinked cellulose fibers.
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Figure 5  DTG curves of electrospun and crosslinked cellulose fibers.

Figure 6  Antibacterial activities of electrospun and crosslinked cellulose fibers.
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