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Introduction
Human thermoregulation aims at keeping core temperature at approximately 37 °C and 
resist thermal fluctuations caused by either endogenous or exogenous factors. Muscular 
exercise, particularly when performed at vigorous intensity, drastically increases meta-
bolic rate as compared to baseline levels (Jette et  al. 1990). Depending on the type of 
exercise performed, more than 50% of metabolic energy is released as heat (Gonzalez-
Alonso et al. 2000; Krustrup et al. 2003) that must be dissipated to the environment to 
maintain body heat balance. Inadequate heat dissipation results in hyperthermia which 
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limits physical performance especially in endurance-like exercise (Gonzalez-Alonso 
& Calbet 2003; Nybo 2007, 2009; Tucker et  al. 2004). The degree of exercise-induced 
hyperthermia is largely independent of environmental conditions and directly propor-
tional to the metabolic rate (Nielsen 1938). Sports apparel may also contribute to hyper-
thermia during physical activity as clothing imposes a barrier for heat exchange with 
the environment (Gavin 2003). Even in relatively cool environments potentially perfor-
mance-limiting increases in core temperature may occur if exercise intensity (Ely et al. 
2009) and the insulation of the sports apparel worn are sufficiently high (Gavin 2003; 
Gonzalez et al. 1997).

While systemic increases in body temperature have repeatedly been found to impair 
endurance performance (Stevens et  al. 2016), the functioning of individual skeletal 
muscles is known to be directly proportional to muscle temperature. Cooling report-
edly impairs both the maximal power (Csapo et  al. 2017; Drinkwater & Behm 2007) 
and endurance capacity of skeletal muscles (Bergh & Ekblom 1979; Faulkner et al. 1990; 
Oksa et al. 2002). In confirmation of the latter, Inoue et al. (2016) recently showed that 
endurance work performance in a cycle ergometer test was higher when thigh muscle 
temperature was set to 36 °C as compared to 32 °C.

Sports apparel should therefore meet the competing demands to keep working mus-
cles warm while still facilitating overall heat dissipation to prevent performance-limiting 
rises in core temperature. In scientific experiments, various attempts have been made to 
locally influence muscle temperature through warm water immersion (Gray et al. 2006; 
Sargeant 1987), exposure to hot air (Schlader et al. 2011) or integration of heating/cool-
ing elements (Faulkner et al. 2012; Inoue et al. 2014, 2016). As opposed to these attempts 
to actively modify muscle temperature, it was decided to reduce heat dissipation through 
insulation pads that are readily implementable into outdoor sports apparel. Specifically, 
the goal of this study was to determine the effects of thermal insulation of working mus-
cles on clothing surface temperature and parameters reflecting thermoregulation, physi-
cal effort and perceived exertion during endurance exercise in cool environments. Two 
different combinations of sports apparel were compared: One textile system consisted of 
a thin shirt and pant to maximize overall heat loss through evaporation of sweat, con-
vection and radiation, whereas the other system featured additional thermal insulation 
pads placed over the leg muscles with the aim to reduce heat flux from working muscles.

It was hypothesized that the pants containing insulation pads would reduce heat flux, 
promote local rises in temperature and thereby reduce submaximal exercise responses, 
as reflected by reduced blood lactate levels and lower heart rates. Furthermore, it was 
assumed that the insulation pads would not hinder overall dissipation of body heat as 
they covered only a small part of the whole body surface. Therefore no significant dif-
ferences in auditory canal and upper body clothing surface temperature were expected 
between clothing systems.

Method
Study design

To test the influence of insulation pads on clothing surface temperature and parameters 
reflecting thermoregulation, physical effort and perceived exertion two different running 
pants with (PINSUL) and without insulation pads (PCOOL) were designed and tested in 
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two sub-studies: Study A was performed with recreationally active sportsmen who were 
tested while exercising at moderate intensity under temperate climatic conditions. To 
reflect the demands in competitive sport, additional experiments were conducted with 
well-trained endurance athletes exercising in a considerably colder environment (study 
B).

Apparel

Two different, custom-made running pants (PCOOL, PINSUL) were made of identical base 
fabric and in the same cut. While PCOOL was just made of the base material to facilitate 
heat dissipation, PINSUL featured additional insulating pads as illustrated in Fig. 1 which 
were sewn in on the inside. The pads were placed to covered the gluteal, knee extensor, 
ankle dorsi- and plantar flexor muscles and covered ~ 30% of the surface of PINSUL. The 
overall insulation of PCOOL (size: S) was 0.055 clo while PINSUL (size: S) featured 2.4-times 
higher insulation (0.131 clo)1 RCT and further material characteristics of the base fabric 
and insulation pads are evident from Table 1. The pants were combined with thin long-
sleeve shirts composed of the same material as the pants. Pants and shirts were provided 
in different sizes to guarantee a tight fit. Subjects were also provided with identical thin 
hats and gloves (100% polyester).

Fig. 1  Schematic image of PINSUL indicating the position of the additional insulation pads placed on the 
inside at the front (a) and rear (b) face. The pads were placed to cover the gluteal, knee extensor, ankle 
dorsi- and plantar flexor muscles and covered ~ 30% of the surface of PINSUL. PCOOL (not pictured) had the 
same cut and was made of the same base material as PINSUL but was designed without additional insulation 
pads

1  Overall insulation of PINSUL was calculated based on the RCT of the base material/insulation pads and the surface 
area covered by insulation pads.
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Subjects

Ten male sport students (age: 23 ± 3 y, height: 182 ± 5 cm, weight: 73.4 ± 4.9 kg, body 
surface area2: 2.3 ± 0.1 m2, Body Mass Index (BMI)3: 22 ± 1 kg/m2) and eight well trained 
endurance athletes (age: 28 ± 2 y, height: 175 ± 5  cm, weight: 72.7 ± 7.3  kg, body sur-
face area: 1.9 ± 0.1 m2, BMI: 24 ± 2 kg/m2) volunteered to participate in studies A and 
B, respectively. The experiments were approved by the Institutional Review Board of the 
Department of Sport Science at the University of Innsbruck. Participants were informed 
about the study purpose and methods involved before giving written consent. Physical 
readiness to participate was assessed through completion of the Physical Activity Readi-
ness Questionnaire (PARQ) (Adams 1999).

Exercise intervention

To determine their individual maximal running velocity (vmax) an incremental and 
exhaustive treadmill-based test (5% inclination; pulsar, h/p/cosmos, Germany) was 
completed by all subjects: After warming up for 5  min at 6  km/h, running speed was 
increased by 1 km/h every minute until subjects aborted the test due to full exhaustion. 
If the final stage was not completed for 1 min, vmax was calculated proportionally.

Then, participants were scheduled for two visits to compare the different running 
pants in a randomized order. Tests were conducted at the same time of the day and 
interspersed by a minimum of 48 h of passive recovery. On both testing days, subjects 
warmed up on the treadmill for 5 min at a freely chosen velocity. Then, participants were 
instructed to run for 45 min at 5% inclination. Running velocity was set to 60% (study A) 
and 70% (study B) of vmax. All tests were conducted under constant ambient conditions 
(study A: 7 ± 1 °C and 40 ± 3% relative humidity; study B: 0 ± 1 °C and 40 ± 3% relative 
humidity) in a climatic chamber (Kältepol, Austria). Light wind (20 km/h) was simulated 
using a wind machine (TTW 25000 S, Trotec, Germany) positioned next to the treadmill 
at a 45° angle and facing the subjects. Average running speed was 9.6 ± 0.6 km/h in study 
A and 11.8 ± 0.8 km/h in study B, respectively.

Table 1  Material characteristics

Material composition and density are according to manufacturer. RCT: Resistance to conductive heat transfer was tested 
according to ASTM D1518–14; a higher value reflects higher thermal insulation. Air permeability was assessed according to 
ISO 9237:1995. Thickness was measured according to ASTM D1777–96 (2015) under a compression of 735 Pa

Base fabric Insulation pads

Material composition 94% Polyester, 6% elastane 94% Polyester, 6% elastane

RCT (Km2/W) 0.0086 ± 0.0007 0.0454 ± 0.0038

Air permeability (mm/s) 1287.6 ± 257.6 42.8 ± 5.4

Density (g/m2) 80 380

Thickness (mm) 0.47 ± 0.01 2.14 ± 0.02

2  Body surface area was calculated according to Du Bois & Du Bois (1989).
3  BMI = body mass (kg)/height (m)2.
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Measurements

Measurements were taken after warm-up (t0) and after 15 min (t1), 30 min (t2) and 
45  min (t3) of running. Heart rate, blood lactate, auditory canal temperature and 
perceived exertion were measured at all measuring times whereas body mass meas-
urements as well as thermal images were obtained at t0 and t3 only.

Clothing surface temperatures and auditory canal temperature were determined as 
representative measures of body surface and core temperature. Thermal images were 
recorded from the upper and lower body (Vario Cam High Resolution, Infratec, Ger-
many) with subjects wearing the test apparel. Average clothing surface temperatures 
were separately calculated in areas coinciding with the anterior and posterior aspect 
of legs and upper body using custom-made Labview routines (National Instruments, 
USA) (Fournet et al. 2015). As both pants (PINSUL, PCOOL) and the long-sleeve shirts 
were composed of the same material and tight fit, temperature values calculated on 
the basis of thermal images of the clothing surface can be directly compared without 
the need to adjust results for differences in material compositions (emission coef-
ficient was assumed to be ε = 0.9) (Maldague 2012; Pastore & Kiekens 2000). Since 
the temperatures measured on the anterior and posterior side were found to be 
largely congruent, the average of these two values was calculated for further analy-
sis. According to Burtscher et al. (2012) auditory canal temperature was measured in 
the left ear using a thermometer, which was kept under ambient temperature condi-
tions between measurements (ThermoScan IRT 4520, Braun, Germany). During the 
protocol, ears were covered with a cap to prevent potential bias resulting from cool-
ing of the outer auditory canal.

Blood lactate, heart rate and subjects´ loss of body mass were measured as param-
eters reflecting physical effort. For blood lactate concentration, capillary blood 
samples were drawn from the earlobe (Double determination; EKF Biosen 5040, 
Germany). Heart rate was measured via chest strap (Polar Electro, Finland). To esti-
mate the loss of water due to sweating and respiration, the subjects were weighed in 
underwear before and after running using a high-precision scale (Kern DS 150K1, 
Kern & Sohn GmbH, Germany), and the average of five consecutive measurements 
was considered for further analyses (Agache et  al. 2004). In addition, Borg’s scale 
(6 = no exertion; 20 = maximal exertion) was used to inquire perceived exertion 
(Borg 1982).

Statistical analyses

Factorial ANOVAs with repeated measurements were used to determine the influ-
ence of the factors pant and time on blood lactate, heart rate, auditory canal tem-
perature, clothing surface temperature, subjects´ loss of body mass and perceived 
exertion. Pant × time interaction effects were non-significant for all variables, so 
the respective results are omitted for improved clarity. In cases where Mauchly’s 
test indicated a violation of the assumption of sphericity, degrees of freedom were 
corrected by the Greenhouse–Geisser procedure. Values are reported as mean val-
ues ± standard deviation (SD). Differences were considered significant at p ≤ 0.05. 
SPSS Statistics Version 21 (IBM, USA) was used for all statistical calculations.
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Results
Lower body clothing surface temperature

In study A (Fig. 2a) lower body clothing surface temperatures (TLB) (F(1, 9) = 14.138, 
p = 0.004) were significantly lower for PINSUL compared to PCOOL indicating a lower 
heat flux with PINSUL. TLB did not change significantly over time (F(1, 9) = 2.855, 
p = 0.125). Also in study B (Fig. 2b), TLB showed significantly lower values for PINSUL 
(F(1, 7) = 11,531, p = 0.012). Reflecting the colder conditions in the climatic cham-
ber during study B, TLB dropped significantly during the exercise intervention (F(1, 
7) = 9.664, p = 0.017).

Upper body clothing surface temperature

In study A (Fig. 3a), upper body clothing surface temperature (TUB) revealed no sig-
nificant differences between apparel systems (F(1, 9) = 0.488, p = 0.503) but decreased 
significantly from t0 to t3 (F(1, 9) = 25.877, p = 0.001). Analogously in study B 

Fig. 2  Lower body clothing surface temperature (TLB) as measured after warm-up (t0) and after 45 min (t3) 
of running while subjects were wearing the thermally insulating (PINSUL) and non-insulating (PCOOL) pants 
in studies A (a) and B (b). Significantly lower TLB were found for PINSUL (p < 0.05) in study A and B indicating 
a lower heat flux with PINSUL compared to PCOOL. A significant effect of time (p < 0.05) was found in study B. 
Note: Asterisk indicates significant differences (p < 0.05) between PINSUL and PCOOL

Fig. 3  Upper body clothing surface temperature (TUB) as measured after warm-up (t0) and after 45 min (t3) 
of running while subjects were wearing the thermally insulating (PINSUL) and non-insulating (PCOOL) pants 
in studies A (a) and B (b). No significant differences were found between PINSUL and PCOOL. Factor time was 
significant in study A and B (p < 0.05)
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(Fig. 3b), the influence of pant on TUB (F(1,7) = 1.989, p = 0.201) was non-significant 
whereas a significant effect of time was found for TUB (F(1,7) = 12,245, p = 0.010).

Auditory canal temperature

In study A, auditory canal temperature (Fig.  4a) was neither significantly affected by 
pant F(1, 9) = 0.371, p = 0.558) nor time (F(3, 27) = 1.382, p = 0.270).

Just like in study A, the effect of pant (F(1, 7) = 0.192, p = 0.674) on auditory canal 
temperature was not significant in study B (Fig. 4b). However, a significant drop in audi-
tory canal temperature was observed over time (F(3, 21) = 7.504, p = 0.001).

Parameters reflecting physical effort

In study A (Fig. 5a) no significant difference between blood lactate levels was found 
between PINSUL and PCOOL (F(1, 9) = 0.612, p = 0.454). In response to the exercise, 
blood lactate increased at the start of the exercise and then stabilized (F(1.064, 
9.579) = 27.564, p < 0.001) at higher levels.

Just as in study A, the effect of pant (F(1, 7) = 0.050, p = 0.830) on blood lactate lev-
els was not significant in study B (Fig. 5b). Blood lactate increased compared to initial 
levels and then stabilized during exercise (F(1.292, 9.045) = 29.263, p < 0.001).

In study A (Fig.  6a), no significant effects on heart rate were found for the factor 
pant (F(1, 9) = 4.896, p = 0.055). Heart rate increased during the running intervention, 

Fig. 4  Auditory canal temperature as measured after warm-up (t0) and after 15 min (t1), 30 min (t2) and 
45 min (t3) of running for the thermally insulating (PINSUL) and non-insulating (PCOOL) pants worn in studies A 
(a) and B (b). No significant differences were found between PINSUL and PCOOL but factor time was significant 
in study B (p < 0.05)

Fig. 5  Blood lactate levels as measured after warm-up (t0) and after 15 min (t1), 30 min (t2) and 45 min (t3) 
of running while wearing the thermally insulating (PINSUL) and non-insulating (PCOOL) pants in studies A (a) 
and B (b). No significant differences were found between PINSUL and PCOOL but factor time was significant in 
study A and B (p < 0.05)
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with all follow-up measures being significantly greater as compared to t0 (F(1.120, 
10.076) = 237.294, p < 0.001).

Also in study B (Fig. 6b), the effect of pant on heart rate (F(1, 7) = 0.661, p = 0.443) 
was non-significant (F(3, 21) = 0.043, p = 0.988). Heart rate increased from t0 to t1 
and then stabilized, revealing a significant effect of time (F(1.118, 8.318) = 53.496, 
p < 0.001).

Body mass loss

In study A, subjects’ body mass decreased significantly from t0 to t3 by 646 ± 107 g with 
PINSUL and 645 ± 133 g with PCOOL (F(1, 9) = 330.435, p < 0.001), but no significant differ-
ences were found between pants (F(1, 9) = 0.075, p = 0.791).

Comparable losses in body mass (PINSUL: 644 ± 182  g, PCOOL: 680 ± 170  g) were 
observed in study B. As in study A, no statistical effects were found between pants (F(1, 
7) = 0.013, p = 0.911) but the effect of time was significant (F(1, 7) = 104.178, p < 0.001).

Perceived exertion

Perceived exertion as measured with the Borg scale is shown in Fig.  7a, b. As for the 
parameters reflecting physical effort, the differences between pants (F(1, 9) = 0.438, 
p = 0.525) failed to reach statistical significance in study A. Perceived exertion increased 

Fig. 6  Heart rate as measured after warm-up (t0) and after 15 min (t1), 30 min (t2) and 45 min (t3) of running 
for the thermally insulating (PINSUL) and non-insulating (PCOOL) pants in studies A (a) and B (b). No significant 
differences were found between PINSUL and PCOOL but factor time was significant in study A and B (p < 0.05)

Fig. 7  Perceived exertion as measured after warm-up (t0) and after 15 min (t1), 30 min (t2) and 45 min (t3) of 
running with the Borg scale for the thermally insulating (PINSUL) and non-insulating (PCOOL) pants in studies A 
(a) and B (b). No significant differences were found between PINSUL and PCOOL but factor time was significant 
in study A and B (p < 0.05)
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with both pants during the protocol reflecting a significant influence of time (F(3, 
27) = 229.550, p < 0.001).

A similar time course of perceived exertion was found in study B. No significant differ-
ences between PINSUL and PCOOL (F(1, 7) = 0.538, p = 0.487) were found, but the effect of 
time was significant (F(1.262, 8.832) = 129.561, p < 0.001).

Discussion
The aim of this application-oriented study was to determine the effects of thermal 
insulation pads placed over working leg muscles on clothing surface temperature and 
parameters reflecting thermoregulation, physical effort and perceived exertion during 
endurance exercise in cool environments. In agreement with the hypothesis, signifi-
cantly lower TLB for PINSUL compared to PCOOL were found, confirming the insulation 
effect of the additional pads. Furthermore, no significant differences in TUB and auditory 
canal temperature were found, which confirms the assumption that the additional insu-
lation pads would not impair thermoregulation during exercise. However, no significant 
differences in parameters reflecting physical effort or perceived exertion between PINSUL 
and PCOOL were found.

The rationale to test insulation pads placed over working muscles with the aim to 
improve endurance performance in cool environments was that cold ambient conditions 
may lead to a drop in muscle temperature (Parkin et al. 1999). This may be of functional 
importance since cold muscles show impaired performance (Bennett 1985; Bottinelli 
et  al. 1996; Drinkwater & Behm 2007). To counter the expected decreases in muscle 
temperature, simple insulation pads were used which, unlike active cooling or warming 
devices (Faulkner et  al. 2012; Gray et  al. 2006; Inoue et  al. 2014, 2016; Sargeant 1987; 
Schlader et al. 2011), do not require energy supply and could be easily integrated into 
sports apparel in real-life scenarios.

With PINSUL, TLB were significantly lower as compared to PCOOL. Lower surface tem-
peratures reflect smaller heat loss due to better thermal insulation (Al-Homoud 2005). 
During exercise, muscles produce heat with heat production being directly proportional 
to exercise intensity (Gonzalez-Alonso et al. 2000; Jette et al. 1990). The lower heat emis-
sion observed with PINSUL is expected to promote higher local temperatures underneath 
the insulated areas. However, conclusions about the effects on muscle temperature 
remain speculative since (highly invasive) direct measurements were precluded in this 
study. No significant differences in TUB and auditory canal temperature between pants 
were found, implicating that thermoregulation was not negatively influenced by the 
additional insulation pads. Studies by Fournet et al. (2015) and Gavin et al. (2001) con-
firm these results. They showed that neither clothing systems featuring the same overall 
insulation but varying local insulation, nor small differences in overall clothing insula-
tion have a significant influence on core temperature while exercising at intensities com-
parable to the ones applied in this study.

The expected differences in muscle temperature notwithstanding, parameters reflect-
ing physical effort and perceived exertion were not significantly different between PINSUL 
and PCOOL. Various factors may explain this result: It is possible that the warming effect 
of the insulation pads was not large enough to cause significant differences in muscle 
temperature and, consequently no physiologically relevant differences in physical effort 
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were found. Inoue et al. (2016) induced temperature differences of 4 °C within the mus-
cle to produce a significant effect on endurance performance. It is also possible that, even 
with the non-insulating PCOOL, muscle temperatures did not drop to an extent where 
performance deficits may be expected (Noakes 2000). While exercise intensities and 
climatic conditions were deliberately selected to represent typical conditions encoun-
tered by recreationally active sportsmen who exercise in a cool environment (study A) or 
well-trained athletes exercising in a cold environment (study B), lower exercise intensi-
ties in combination with colder environmental conditions are expected to result in more 
drastic decreases in muscle temperature. In future studies the effect of insulation pads 
should be evaluated in climatic conditions typical for cold-weather endurance sports like 
cross country skiing where training and competition are often performed in tempera-
tures below − 15 °C (Larsson et al. 1993).

Several methodical limitations of the current study must be considered. Instead of 
measuring muscle temperature directly, thermography recordings were used to confirm 
the insulating effect of the additional pads. In future studies direct measures of muscle 
temperature should be used to directly determine the differences in muscle temperature 
induced by insulation pads. Additionally, submaximal exercise responses were investi-
gated, i.e., blood lactate, heart rate, auditory canal temperature, loss in body mass and 
perceived exertion. While representative of physical effort, such measures may not accu-
rately reflect exercise performance capacity. Thus, in future studies, the effect of insula-
tion pads on the outcomes of competition like events or endurance performance tests 
(e.g. time trails or time to exhaustion) should be investigated.

Conclusions
Insertion of properly positioned insulation pads into sports apparel is a practical 
approach to limit heat emission from working muscles during endurance exercise in 
cool environments without impairing overall body-heat dissipation. However, under the 
environmental conditions and exercise intensities applied in this study, the insulation of 
working muscles failed to significantly improve parameters reflecting physical effort or 
perceived exertion. Two reasons might account for that: Either the warming effect of 
the insulation pads was not large enough to cause significant differences in muscle tem-
perature or muscle temperatures in both pants did not drop to an extent where perfor-
mance deficits may be expected. Future studies on the benefit of insulation pads should 
therefore focus on temperature conditions markedly below 0 °C, where a drop in muscle 
temperature is likely to be larger. Also muscle temperature should be measured directly.
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