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Introduction
With the continuous spread of COVID-19, medical, community workers, and volunteers 
during their duties may be exposed to polluted air (Karim et al., 2020). They may also 
come into direct contact with patients and potential virus carriers. Therefore, special 
protective garments are widely used to block transmission. However, these tight, closed 
spaces between protective clothing and body surface make against human body heat 
dissipations and cause discomfort microclimate under clothing (Tang et al., 2016). The 
ordinary clothes are provided with holes for ventilation and heat dissipation, but this 
goal gains at the expense of losing security. A more acceptable way would be to design a 
personal microclimate management system to maintain thermal comfort which allows 
people to overcome a harsh environment (Cho et al., 2016). Such a system should main-
tain a comfortable microclimate, as well as filter and purify the inflow air. Moreover, the 
system should be user-controlled to adjust the ventilation rate in the air gap between the 
body and clothing.
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The human body generates heat energy from the process of metabolism and body 
movements. While wearing ordinary work clothes, heat flux is lost easily from breath-
able cloth due to the high temperature gradient between the human body and ambi-
ent environment (Xu & Gonzalez, 2011). But under the closed protective clothing, the 
thermal energy is reserved in small air gap spaces because of airtight fabric. So, garment 
cooling measures must be considered to prevent thermal discomfort, excessive sweating 
even heat stroke results from the increase in human core body temperature.

Since clothing always remains close to the body even during dynamic motions, the 
portability of the air ventilation system is more advantageous. The portable garment 
cooling method can be classified into two categories: phase change garments and forced 
air exchanger garments. In phase change garments, the cooling effect result from the 
heat absorption by the melting of phase change materials (Salaun et al., 2010). Therefore, 
the cooling efficiency decreasing as the phase change material is melting. Furthermore, 
it is a difficult problem for the store and transmission of phase change materials, not to 
mention reusability. In a forced air exchange cooling system, some air exchange fans are 
installed on the garment surfaces, and heat loss occurs by convective heat transfer as 
well as evaporative moisture transfer (Delkumburewatte & Dias, 2012). Compared with 
the phase change system, the forced air exchange system has the advantage of relatively 
high cooling capacity and reusability. Besides, the simple manufacturing process and low 
cost are also its superiorities (Ernst & Garmella, 2013).

Previous studies showed that wearable air ventilation systems are effective enough 
till as high as 40 °C (Hadid et al., 2008) and 45 °C (Barwood et al., 2009) environmen-
tal temperatures. Some design modifications of air ventilation clothing by moving the 
fan locations and providing openings at appropriate locations were tried to improve the 
cooling performance (Zhao et al., 2013). The space between the skin and the clothing, 
i.e. the air gap, plays an important role in heat and mass transfer. Li et al. (2013) estab-
lished a relationship between air gap thickness and heat transfer using 3D scanning and 
human body temperature data. Mert et  al. (2015) studied the effect of heterogeneous 
and homogenous air gaps on dry heat loss through the garment by scanned cloud data. 
These experimental analyses, however, have some shortcomings because of the lack of 
three-dimensional distribution characters, which may bring about significant local vari-
ations. The computational fluid dynamics (CFD) method, with the ability to simulate 3D 
temperature and velocity fields, has become an essential tool in the prediction of ther-
mal comfort of protective garments cooling systems (Zhang & Jia, 2021). Meanwhile, 
heat transfer and mass transfer can be acquired by solving the coupled multiple transfer 
model equations. Sun and Jasper (2015) investigated a 2D cooling system consists of a 
series of micro-fans, placed in a ribbon and attached to a garment. They argued that this 
convective cooling system significantly improved the convective and evaporative heat 
transfer coefficients when the inlet airflows were at 0.75 m/s and 1 m/s. Choudhary et al. 
(2019) developed a three-dimensional air ventilation cooling model to determine heat 
transfer between the human body and the environment by numerical simulation. The 
result showed that the area-weighted average torso heat flux increased while the fan air-
flow rate increased.

The above studies proved that the heat convection on body skin is highly affected by 
airflow conditions, such as air velocity, wind direction, turbulence eddies. To the best of 
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our knowledge, few reports comprehensively describe the distribution and mechanism 
of airflow conditions between three-dimensional body skin and garment surface. In this 
research, a wearable convective cooling system composed of several micro-fans is pro-
posed, then, the temperature and heat flux distributions, as well as flow mechanism are 
analyzed.

Methods
Model development

A 3D avatar is used in the assessment of thermal comfort under different conditions. 
The female body is established by CLO Standalone (CLO Virtual Fashion Inc, Korea), 
with a height of 166  cm and bust, waist and hip girth length of 86, 66 and 90  cm, as 
shown in Fig. 1a. A fitted X-type garment is constructed by Bezier-spine curves. First, 
the body surface feature points are extracted and used to obtain corresponding garment 
feature points by adding air gap distance. Then, these garment feature points are used to 
construct garment surfaces by Bezier-spine curves (Zhang et al., 2014, 2018). The flatten 
garment pattern is shown in Fig. 2c. A wearable cooling system, consists of a series of fil-
tered micro-fans with diameters of 2 cm, is embedded in the side seam of the protective 
garment. These fans connect to a potable lithium battery. This convective cooling system 
is expected to matain the thermal comfort in the hazardous environment. The Ansys 
ICEM-CFD (ANSYS Inc., Canonsburg, PA, USA) was used to generate an unstructured 
mesh in the computational domain by the robust Octree method. All the body and gar-
ment surfaces meshed with triangular surface mesh (Fig. 2d). Eight inflation layers were 
also generated along the body surface to capture the near wall temperature gradient cor-
rectly. It is to be noted here that only half-geometry was taken into consideration in this 
study due to the symmetric, and treated as the computational domain.

Governing equations

A computational fluid dynamics approach was used to perform three dimensional 
transient simulations of flow and heat transfer through the microclimate involving air 
ventilation system. Some of the important simplifications and assumptions consid-
ered in the present study are as follows (Ismail et al., 2019; Oh & Kato, 2018): Firstly, 
we assume that the present model deals with dry conditions without sweating, i.e. we 
focus on convective heat transfer rather than evaporative heat transfer. Secondly, the 

(a) (b) (c) (d) 
Fig. 1  3D model and boundary conditions. a Geometry model, b garment type and boundaries, c garment 
pattern, d mesh domain
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protective garment was considered air-tight, the air flows in from the micro-fans and 
goes out through collar, sleeves and hem. Thirdly, we also assume turbulent incom-
pressible flow with ideal gas, as well as the no-slip boundary condition for the wall 
surface. The Boussinesq approximation was used to calculate the buoyancy effect, and 
realizable k–ɛ model was used to deal with the turbulence effect.

With these assumptions, the governing Reynolds-averaged equations are summa-
rized below (Renato et al., 2019):

Continuity equation:

Momentum equation:
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Fig. 2  Mesh independence check and method evaluation. a The contours of y+ on body surface, b grid 
convergence tests, c wearable convective cooling system, d model validation with public results
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Energy equation:

The k–ɛ turbulence model is described by the turbulent kinetic energy k and its dissi-
pation rate ɛ, which can be expressed as follows (Yang et al., 2016):

where, the viscosities turbulence coefficient µt is defined as

Boundary conditions and technical approaches

The boundary conditions are shown in Fig.  1b. The micro-fans are considered as air-
flow inlet, and the air gaps of armhole and neckline are considered as air outflow. The 
human body is set as isothermal wall, the body skin surface temperature was fixed at 
36  °C/309 K. At the inlet, so as to investigate the heat transfer in the microclimate of 
protective clothing, forced convection in a normal atmospheric environment, ambient 
temperature of 20 ℃/293 K, was modeled by considering air flowing through micro-fans 
then reach the body surface. The velocity was kept constant at 0.5 m/s, and the relative 
humidity was maintained at 40%. The following calculations were performed under dry 
conditions (i.e. no sweating). A no-slip condition at the surface of the garment and body 
skin was imposed. The thermal conductivity of air and body are considered as 0.026 and 
0.3 W/(m K). The convective heat transfer from the outside of the garment to the envi-
ronment was also considered and treated as a typical natural convection condition. This 
heat loss coefficient was taken as 5 W/m2 K. The textile consisted of a 100% cotton fabric 
layer of thickness 0.204 mm, and the physical properties were obtained from published 
results (Sun & Jasper, 2015). The detailed physical properties and boundary conditions 
are shown in Table 1.

The above mentioned mathematical equations were solved at each node of the com-
putational domain by using the finite volume method (FVM). A second order upwind 
scheme for all the pressure, momentum, turbulence and energy equations were used for 
discretization with a multidimensional total variation diminishing flux limiter (Jia et al., 
2020). Finite volume method based commercial CFD solver CFD++ (Metacomp Tech-
nologies Inc, USA) was used to obtain the numerical results. Double precision format 
was used for all kinds of computations and the converged residual level was set to below 
1 × 10–5.

∂(ρuicpT )

∂xi
= −

∂

∂xi

(

k
∂T

∂xi
+ ρuicpT

)

(4)
∂

∂xi
(ρkui) =

∂

∂xj

[(

µ+
µt

σk

)

∂k

∂xj

]

+
µt

2

(

∂ui

∂xj
+

∂uj

∂xi

)

− ρε

(5)
∂

∂xi
(ρεui) =

∂

∂xj

[(

µ+
µt

σε

)

∂ε

∂xj

]

+ C1ε
ε

k

µt

2

(

∂ui

∂xj
+

∂uj

∂xi

)

− C2ερ
ε2

k

µt = ρCµ

k2

ε
, and Cµ = 0.09,C1ε = 1.44,C2ε = 1.92, σk = 1, σε = 1.3.



Page 6 of 14Zhang et al. Fashion and Textiles             (2022) 9:2 

Methodologies evaluation

The nondimensional near wall distance y+, which express as y+=ρuτ ywall/µ , was 
used to measure the first grid cell above the wall. As can see in Fig. 2a, the near wall 
y+ was less than 1.0 for all most of the human body surface. At this time, the first 
grid cell was located within the viscous sublayer (Jia et al., 2020). Grid independence 
on cooling performance of micro-fan system was analyzed with three levels of mesh 
refinement, namely 3.2 million (coarse), 3.7 million (medium) and 4.2 million nodes 
(dense). The results were shown in Fig. 2b, it can be observed from the mesh check 
study that the dense grid is enough to resolve the heat transfer of the micro-fan cool-
ing system.

The numerical method is validated first against the available results (Sun & Jasper, 
2015) for a two dimensional wearable convective cooling system, in which a series 
of micro-fans installed in a ribbon and attached to clothing, as shown in Fig. 2c. The 
convective heat transfer coefficient was obtained and compared with public results. 
The comparison study shows that the present work is agrees with the available results 
well. So, it would be satisfactory to carry out the following calculations under the 
above conditions.

Results and Discussion
With the aim of analyzing the temperature and heat transfer distribution in detail, 
four parallel cross-sections were created, namely the chest, bust, waist and hip hori-
zontal planes. Then, the key girths were generated as the intersections of plane and 
body surface, as shown in Fig. 3a. The Cartesian coordinates are fixed to the symme-
try plane, and the X, Y, Z refers to the horizontal, vertical and radial distance.

Three different types of calculations were carried out to study the heat exchange 
between the body and clothing and to determine heat flux quantitatively along the 
skin surface, as: (1) one was comprised of double 2 cm diameter fans, namely the fans 
of No. 3 and No. 7, located in the lower bust and waist with a distance of 18 cm; (2) 
the second was comprised of four 2 cm fans, i.e., the fans of No. 1, No. 3, No. 5 and 
No. 7, located in the lower armpit, bust, waist and hip with the distance of 8, 9, and 
14 cm and (3) the third was comprised of eight 2 cm fans (No. 1 to No. 8) located in 
lower armpit, bust, waist and hip with the distance of 3.5, triple 4.5, 5.5, 6.5, 7.5 and 
10 cm on the garment surface. The fan’s type and numbers are shown in Table 2. The 

Table 1  Physical properties and boundary conditions

Medium Boundary types Physical properties Thermal 
conductivity 
(W/K m)

Pressure constant 
thermal capacity 
(J/K kg)

Inlet Air Uniform inlet flow pair = 101325 pa
Tair = 283 K
vair = 0.5 m/s
ρair = 1.165 kg/m3

0.026 1000

Outlet Air Back pressure outlet pout = 101325 pa – –

Body surface Human skin Isothermal wall Tskin = 310 K
ρskin = 860 kg/m3

0.3 5021

Garment Cotton Convection wall ρcottom = 81 kg/m3 0.059 1150
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ambient air temperature is 283  K and the inflow air is transfer through micro-fans 
with a constant velocity of 0.5 m/s.

Three dimensional air gap distributions

The 3D air gap contours are shown in Fig.  3b. As shown, the neckline, side bust and 
waist yield a narrow air gap of less than 5 mm because the clothing is closed to the body 
surface. Meanwhile, the underbust and groin region have a large air gap distance due to 
the structure of the human body. The detailed air gap distributions on body key girth 
are shown in Fig. 4. As can see in Fig. 4a, the curves of the chest and bust girth go down 
along the body surface on the front side. However, the trend of the hip front girth curve 
is increasing at first and then decreasing. The reason is that this region is nearby the area 
of the human body groin. Figure 4b shows the scene of body backside, the air gap is keep 
decreasing on the whole, but the distance is bigger than that on the front side.

Temperature distributions on garment surface

The simulated temperature contours of different micro-fans configurations are shown 
in Fig. 5. As can see, there are several high temperature regions on the clothing surface 
near the neckline, armpit, waist and thigh under the natural convection condition. The 

(a) (b)
Fig. 3  Landmarks and air gap. a Horizontal cross-section and cut lines, b air gap distance contours

Table 2  Calculation conditions

Cases Fan type 
(cm)

Inlet airflow 
(m/s)

Micro-fans Numbers Space between fans

Case 1 2 0.5 2 No. 3, No. 7 18 cm

Case 2 2 0.5 4 No. 1, No. 3, No. 5 
and No. 7

8, 9, and 14 cm

Case 3 2 0.5 8 No. 1 to No. 8 3.5 cm, triple 4.5 cm, 
5.5 cm, 6.5 cm, 7.5 cm and 
10 cm
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reason is that the above mentioned area is narrow enough so that the heat flux transfer 
from the body to the clothing surface easily. But Fig. 5a–c show different scene because 
of forced heat flux convection by micro-fans. Firstly, if there are just two separated micro-
fans installed on the garment which are located at the lower bust and upper thigh (Fig. 5b), 
there are other two high temperature areas appear around the micro-fans. Meanwhile, 
there is a big high temperature region on the thigh girth near the fan, the reason is mainly 
that part of the inlet air flows reflected the garment surface due to the narrow air gap dis-
tance, as can see in Fig. 3b. Secondly, if there are four micro-fans located at the armpit, 
underbust, waist and upper hip (Fig. 5c), the high temperature regions become bigger and 
the peak value increase to a new level and the area near the fourth fan keeps at a low level 
because of a big air gap distance. Thirdly, if the number of micro-fans increased to eight, 
there are several anomaly high temperature regions around No. 1 to No. 6 fans because of 
the narrow and uneven air gap. However, the high temperature regions are not so appar-
ently around the last two fans because of wide air gap.

In order to analyze the temperature quantitatively, the detailed temperature distri-
butions on key girths are exhibited in Fig.  6. As is shown in Fig.  6a, the temperature 
distributions on the chest girth garment surface increase with the horizontal distance 
nonlinear. The case of two fans yield the lowest temperature on the both side of garment 
surface, while the model with eight fans obtains the highest temperature, especially on 
the back side. Figure 6b shows that, the temperature curves on the bust girth of three 
cases keep pace with each other on the whole, except at the location of armpit. On the 
armpit area, the temperature curves rise up quickly and reach about 299.5 K for case 3, 
298.6 K for case 2 and 296.8 K for case 1. This phenomenon mainly due to the combined 
action of narrow distance and quickly flow speed of outflow. Figure 6c depicts that the 
temperature curves show a wavelike appearance on the waist girth, especially between 
the section of 0.1 m < x < 0.12 m. To be specific, there is a plateau region on the tempera-
ture curve of case 1, but there are two high peaks for case 2 and 3 where the temperature 
reach to 295.9 K and 296.8 K. As can see in Fig. 6d, there show different scene for front 
side and back side. The temperature curves of back hip side increase to high values in 
the middle but decrease to lower values at the end. However, the temperature curves 
of front hip side decrease to a low level at the middle due to large air gap distance, but 

(a) (b)
Fig. 4  Air gap distance distributions. a Air gap distance of front side, b air gap distance of back side
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increase to high number near the side part because of forced convection of micro-fans. 
Moreover, the convection effect is enhanced by the increase the number of fans.

Fig. 5  Temperature contours under various micro-fans type. a Case 1, 2 fans, b case 2, 4 fans, c case 3, 8 fans

(a) (b)

(c) (d)
Fig. 6  Temperature distribution on garment surface. a Chest girth, b bust girth, c waist girth, d hip girth
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Heat transfer on body surface

The conductive and convective heat transfer coefficients for an environmental temperature 
of 20 °C according to simulation are given in Fig. 7. Predictably, the heat transfer distribu-
tion on the body surface is strongly related to the inflow air from micro-fans. Only a small 
portion of body surface is covered by micro-fan, but a large high heat flux area is around it 
due to three dimensional airflow. As can see in Fig. 7a, under the circumstance of case 1, 
because of the forced convective heat transfer, there are two high heat flux regions around 
the micro-fans, and each of them has a peak value of about 85 W/m2 and 60 W/m2. Besides, 
there is also a high heat flux region on the top of the shoulder, mainly due to the conductive 
in air gap. For case 2 in Fig. 7b, there are four different high heat flux regions around the 
micro-fan holes, and each of them has a heat spot corresponding to the micro-fans inlet air 
flow. As for case 3 in Fig. 7c, eight high heat flux regions next to each other along the side 
seam. It is interesting to note that the high heat spots area show a scattered appearance, and 
the location of the high heat spot is offset from the original position on the waist and thigh 
part of the body. This phenomenon will be further explored in detail in followed chapter.

In order to investigate the heat transfer performance quantitatively, the heat transfer 
coefficients on key girths are shown in Fig. 8. The average heat transfer on chest girth, 
in Fig. 8a, is about 27 W/m2 K on the back side and 28.5 W/m2 K on the front side. The 
heat flux curves have a plateau on the front side and a peak on the back side for all the 
three types of micro-fans, and the heat transfer coefficients are higher for more fans, 
as case 3 yield the highest peak value of 29.4 W/m2 K. Figure 8b depicts that the case 
of more fans model gains a bigger heat flux on the bust girth, especially on the position 
near the fans. Figure 8c indicates that the variety of fans number has less influence on 
the waist girth of 0 m < x < 0.75 m, for the heat transfer coefficient almost keeps the same 
for different models. But the area near the micro-fan inlet flow has a totally different 
scene, the curves have sinusoid shape for four and eight fan models. The fans locations 
correspond to the peak values of convective heat transfer coefficient in these regions. 
Figure 8d shows that the heat flux keep at a low level of about 26 W/m2 K for the front 
side and 27 W/m2 K for the back side on most of the hip area. But due to the forced con-
vection, the area near the fans yields a peak value of more than 27 W/m2 K for the eight 

(a) (b) (c)
Fig. 7  Heat flux contours for different cases. a Case 1, two fans, b case 2, four fans, c case 3, eight fans
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fans model. From the above analysis, we find that the micro-fan brings fierce convec-
tion and large heat loss around the fan holes. The heat transfer strength is highly related 
to the fan numbers. However, the influence of forced convection is decreased while the 
location keeps away from the fans mainly due to the low efficiency air ventilation in the 
complex air gap.

Flow mechanism analysis

To illustrate the airflow properties and eddies formed near the skin surface. The local 
velocity profile is obtained and shown in Fig. 9. As can see, the cooling air from micro-
fan gives rise to the high speed airflow in the area around the fans. These flows carry the 

(a) (b)

(c) (d)
Fig. 8  Heat transfer coefficient distribution on body surface. a Chest girth, b bust girth, c waist girth, d hip 
girth

Fig. 9  Air flow contours of air gap and body surface
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heat flux from body surface and reach the garment surface. This action will bring about 
the temperature rise on garment surface. However, the air velocity goes down quickly 
while the location moves far away from the fans. So, the air ventilation efficiency in these 
regions is very poor, as has been predicted above.

With the aim of investigating the detailed flow mechanism, the airflow between two 
parallel flats is computed to simulate the body and garment surfaces with the air gap dis-
tance of 30 mm and 5 mm, as shown in Fig. 10. There are several micro-fans installed on 
the first flat with a diameter of 2 cm. The boundary conditions are set to be the same as 
the human body model.

The calculated airflow speed contours are shown in Fig. 11. As can see in Fig. 11a, 
when the air gap distance is large enough, i.e., 30  mm, the cooling air will flow 
through the fan and reach the skin surface, then two eddy vertexes are created in the 
air gap. The air speed in eddies is relatively slow, so it would cause a small part of heat 
transfer loss on body surface. However, when the air gap distance is small enough, 
namely 5 mm, as shown in Fig. 11b, the inflow will impact the body surface, then it 
is separated into several sub-flows in different directions. These sub-flows from dif-
ferent fans may interact with each other and cause several high speed areas on the 
body surface. Meanwhile, this fierce impact brings about high heat loss on the body 

Fig. 10  Parallel flats model

(a) (b)
Fig. 11  Regional air flow contours under different air gap distance. a Air flow contours with 30 mm air gap, b 
air flow contours with 5 mm air gap
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surface. This phenomenon can maintain a lower body surface temperature, but fails to 
maintain a comfortable micro-environment.

Conclusions
With the aim of keeping thermal comfort in a harsh environment, a concept of a light-
weight wearable convective cooling system is investigated. This system consists of a 
series of filtered micro-fans which is embedded in side seam of the protective garment. 
Three different configurations, namely two, four or eight 2 cm micro-fans models, were 
analyzed. Three dimensional heat transfer at the body surface was simulated with the 
inflow air speed of 0.5 m/s. The main conclusions are as follows:

The installment of micro-fans is a feasible way that can maintain a comfortable micro-
climate under protective garments. The air flow finds its way along paths with flow 
resistance minimized and takes away the body heat flux.

The micro-fan brings fierce convection and large heat loss around the fan holes and 
the convection effect is enhanced by the increase of the fans numbers. However, the 
influence of forced convection is decreased while keeps away from the fans hole due to 
the low efficiency air ventilation in the complex air gap.

When the air gap is small enough, the cooling air impact the body surface directly and 
cause fierce heat loss. At this time, the thermal comfort would goes down to some extent. 
When the air gap distance is large enough, the heat transfer along the skin surface could 
be enhanced by the eddy flow which is existed in the air gap between body and garment. 
Under this circumstance, thermal comfort can be improved to a large extent.
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