Shivers, JL, Yeh, K, Fourt, L, Spivak, & Norman, SM. (1977). The effects of design and degree of closure on microclimate air exchange in lightweight cloth coats. In NRS Hollies & RF Goldman (Eds.), Clothing Comfort: Interaction of Thermal, Ventilation, Construction and Assessment Factors (pp.167-168 ). Ann Arbor Science: Michigan: Ann Arbor.
Google Scholar
Lim, JH, Roh, EK, Yoo, HS, & Kim, EA. (2009). Ventilation and comfort sensation by slit positions of running wear jackets. Journal of the Korean Society of Clothing and Textiles, 33(11), 1794–1805. doi:10.5850/JKSCT.2009.33.11.1794.
Article
Google Scholar
Birnbaun, RR, & Crockford, GW. (1978). Measurement of the clothing ventilation index. Appl. Ergon., 9(4), 194–200.
Article
Google Scholar
Crockford, GW, Crowder, M, & Prestidge, SP. (1972). A trace gas technique for measuring clothing microclimate air exchange rates. British Journal of Industrial Medicine, 29(4), 378–386.
CAS
Google Scholar
Havenith, G, Heus, R, & Lotens, WA. (1990). Clothing ventilation, vapour resistance and permeability index: changes due to posture, movement and wind. Ergonomics, 33(8), 989–1005. doi:10.1080/00140139008925308.
Article
Google Scholar
Chu, MS, & Nakajima, T. (1997). Assessment of clothing ventilation by a trace gas method. Journal of the Korean Society of Clothing and Textiles, 21(8), 1387–1395.
Google Scholar
Satsumoto, Y, Wang, H, Hasebe, Y, Ishikawa, K, & Takeuchi, M. (2000). The effect of bellows action on heat transfer in clothing system. Part 1. The effect of size of air space and air permeability of clothing. Fiber, 56(11), 524–536.
Article
CAS
Google Scholar
Satsumoto, Y, & Havenith, G. (2010). Evaluation of overall and local ventilation in diapers. Textile Research Journal 80(17), 1857–1871. doi:10.1177/0040517510369402.
Article
Google Scholar
Ghali, K, Ghaddar, N, & Jones, B. (2002). Modeling of heat and moisture transport by periodic ventilation of thin cotton fibrous media. International journal Heat of Mass Transfer, 45, 3703–3714. doi:10.1016/S0017-9310(02)00088-1.
Article
Google Scholar
Ghaddar, N, Ghali, K, & Jreije, B. (2008). Ventilation of wind-permeable clothed cylinder subject to periodic swinging motion: Modeling and experimentation. Journal of Heat Transfer, 130(9), 091702-1~11. doi:10.1115/1.2944245.
Article
Google Scholar
Barry, J, Hill, R, Brasser, P, Sobera, M, Kleijn, C, & Gibson, P. (2003). Computational fluid dynamics modeling of fabric systems for intelligent garment design. MRS bulletin 28(08), 568–573.
Article
CAS
Google Scholar
Chowdhury, H, Alam, F, & Subic, A. (2010). Aerodynamic performance evaluation of sports textile. Procedia Engineering, 2(2), 2517–2522.
Article
Google Scholar
Barry, JJ, & Hill, RW. (2003). Computational modeling of protective clothing. International Nonwovens Journal, 12, 25–34.
Google Scholar
Jiang, Y, Yanai, E, Nishimura, K, Zhang, H, Abe, N, Shinohara, M, & Wakatsuki, K. (2010). An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing. Fire Safety Journal, 45(5), 314–326.
Article
Google Scholar
Talukdar, P, Torvi, DA, Simonson, CJ, & Sawcyn, CM. (2010). Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. International Journal of Heat and Mass Transfer, 53(1), 526–539.
Article
Google Scholar
Ambesi, D, Bouma, R, den Hartog, E, & Kleijn, CR. (2013). Predicting the chemical protection factor of CBRN protective garments. Journal of occupational and environmental hygiene, 10(5), 270–276.
Article
CAS
Google Scholar
Zhu, FL, & Zhou, Y. (2013). Modelling heat-moisture transport through firefighters’ protective fabrics from an impinging flame jet by simulating the drying process. Fibers & Textiles in Eastern Europe, 21(5), 85–90.
Google Scholar
Ambesi, D, Kleijn, CR, Hartog, EA, Bouma, RH, & Brasser, P. (2014). Forced convection mass deposition and heat transfer onto a cylinder sheathed by protective garments. AIChE Journal, 60(1), 353–361. doi:10.1002/aic.14246.
Article
CAS
Google Scholar
Elgafy, A, & Mishra, S. (2014). A heat transfer model for incorporating carbon foam fabrics in firefighter’s garment. Heat Mass Transf., 1–13. doi:10.1007/s00231-013-1259-z.
Noca, F, Shiels, D, & Jeon, D. (1999). A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. Journal of Fluids and Structures, 13(5), 551–578.
Article
Google Scholar
Defraeye, T, Blocken, B, Koninckx, E, Hespel, P, & Carmeliet, J. (2011). Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions. J. Biomech., 44(9), 1695–1701.
Article
Google Scholar
Tanabe, SI, Kobayashi, K, Nakano, J, Ozeki, Y, & Konishi, M. (2002). Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings, 34(6), 637–646.
Article
Google Scholar
Cimilli, SD, Deniz, E, Candan, C, & Nergis, BU. (2012). Determination of natural convective heat transfer coefficient for plain knitted fabric via CFD modeling. Fibres& Textiles in Eastern Europe, 20(1), 90.
Google Scholar
Stolwijk, JAJ, & Hardy, ID. (1977). Control of body temperature. In DHK Lee (Ed.), Handbook of Physiology-Reaction to Environment Agents (pp. 45–67). Bethesda: Physiology Society.
Google Scholar
Havenith, G, Pogarty, A, Bartlett, R, Smith, CJ, & Ventenat, V. (2008). Male and female upper body sweat distribution during running measured with technical absorbents. European Journal of Applied Physiology, 104(2), 245–255. doi:10.1007/s00421-007-0636-z.
Article
Google Scholar
Yoo, HS, & Kim, EA. (1996). Comparison of the effect of clothing materials and the openness of garment on the microclimate of the skin simulating system. Journal of the Korean Society of Clothing and Textiles, 20(6), 1084–1095.
Google Scholar
Chu, MS. (2000). Assessment of clothing ventilation through openings. The Research Journal of the Costume Culture, 8(5), 660–667.
Google Scholar
Lee, YS, & Ahn, TW (1991). Sportswear physiological Optimization; Effect of clothing ease, local heating and materials. Journal of the Korean Society of Clothing and Textiles, 15(2), 127–138.
Google Scholar