The integration of 3DP in fashion may eventually lead to a shifting paradigm in this industry. As we redefine this field for the future based on existing literature, such as industry domains previously proposed (Ha-Brookshire and Hawley 2013), there are four critical impacting components to consider in this conceptual model: (1) design and product development, (2) sourcing and manufacturing, (3) retail, distribution and consumer, and (4) sustainability optimization (Fig. 1). In the proposed conceptual model, the first three core sectors will vary in their potential impacts and the challenges to be faced, but those three components will actually operate in a circular and interrelated format, in which various segments or impacts may overlap and feedback into the prior or following sectors. The component covering sustainability optimization serves as a moderating factor that guides the level of impacts from integrating 3DP technology. Such impacts would lead to the new paradigm integrating DDM, which would complement or replace traditional manufacturing approaches.
Impacts on design and product development
Based on current notable literature, such as authored by Lipson and Kurman (2013), addressing the impact and future of 3DP and existing examples of 3DP integrated wearable products, including the Kinematics Dress (2014), works by van Herpen (2017) and Danit Peleg (2014), five major areas were identified to address the key impacts of 3DP integration on design and product development in the fashion industry. First, 3DP technology requires future talents to use a xyz coordinate system based 3D CAD modeling, rendering, and simulation programs, such as Rhinoceros and 3D Studio Max, in creating virtual product prototypes using real world measurements and references. Such programs are drastically different from what traditional fashion designers are accustomed to working with. Currently, 3D CAD/CAM integration available in fashion related programs such as Optitex only allow automated 3D avatar and garment simulation and are designed to build non-flat pattern based 3D objects. A designer would be expected to adapt to the logic of common 3D CAD programs and effectively visualize design, solve problems, and strategize ways of applying various 3D modeling tools (Vanderploeg et al. 2016). In addition, product design using complex structures would require the use of 3D computational design, which may involve tools such as the Grasshopper plug-in for Rhinoceros in visual programming.
Unlike the traditional design approach where designers rely on intuition and tacit knowledge to solve problems (Treadaway 2009), computational design enables encoding design decisions using computer language and predefines the steps needed to achieve a result (Kilkelly 2016). Fashion designers and product developers will be expected to adapt to the change in the order of operation in developing various garment structures. Further, 3DP pioneers today have also been advancing 3DP based wearable design through 3D CAD simulation technology. In response to the limitation in 3DP building volume, one can create hundreds or thousands of interlocking or articulating structures to allow movement using 3D simulation for material drape evaluation (Kinematics Dress 2014). This ultimately eliminates or reduces post-printing processes such as assembly. Moreover, fashion design and product development have traditionally relied heavily on hand-on based practices and intuitive decision making, and a steep learning curve exists in a digital design adaptation for designers who have more training in haptic skills (Danaher 2004; Harris 2005; Treadaway 2009). For 3DP based wearable product design, scholars (Sun and Parsons 2014) have found that traditional fashion designers would need to efficiently apply their spatial visualization ability (Kozhevnikov et al. 2010) and their tacit knowledge in order to effectively translate or convert the conventional hand-on based tools, procedures, and workflow into the 3D CAD processes.
Third, the 3D CAD modeling or rendering processes are often supported by the use of 3D scanning technology, which is capable of producing real world measurement data for a variety of objects from small jewelry pieces to large building structures. A human avatar is often utilized in the 3D CAD process as a “virtual dress form” for wearable product design (Sun and Parsons 2014). Such an approach would eliminate much of the procedures in traditional product development like various fitting sessions using live models. Alternatively, 3D scanning procedures may be utilized in a reverse engineering approach, in which various object iterations or modifications can be made quickly based on scan data without having to develop the base model from the start. The turn around time would consequently become reduced in the prototyping process, particularly considering the streamlined design modification timeline. Such versatility also stimulates various bespoke designs that accommodate targeted end users with a customized design feature or tailored fit (3D Printed XYZ 2013; Nike football 2014). Thus, the impact of integrating 3DP in the fashion industry would thus result in a change in design prototyping efficiency and the ability to move toward mass customization.
Fourth, the integration of 3DP technology would also require fashion designers to explore and understand entirely different types of materials, including both thermoplastics, such as polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and nylon, in form of filament, liquid, or powder, and metals, such as gold, silver, and brass. Each of these materials available is not only uncommon to the traditional textile material in its form but also has unique properties based on different 3DP processes applied. In addition, the properties of various 3DP materials can be manipulated through 3D modeling techniques that allows more flexibility and comfort in the final printed products. It is thus critical that fashion designers not only be able to design using 3D CAD modeling techniques but also apply the material knowledge in strategizing the overall design and product development process, especially considering the limitations in the existing 3DP processes, such as building volume. As a part of the material knowledge adoption, future designers will also need to explore various post-finishing processes and material maintenance methods, such as hand rinsing and air drying for thermoplastic materials.
Lastly, the nature of interdisciplinary knowledge and the skill sets expected for future designers would lead to new collaboration and team approaches. Currently, 3DP fashion pioneers such as van Herpen (2017) have been teaming up with experts outside of the field in creating unique wearable art that otherwise would have posed extremely high barriers for a traditional fashion design team. These collaborators are often engineers who are experienced in specialty materials and architects holds 3D CAD expertise. Today, many 3D printed fashion creations have also been a result of STEM (science, technology, engineering and math) field experts reaching beyond their fields and exploring the fashion and art realms (XYZ Workshop 2014). Overall, the boundaries of design and product development as well as those of designers and engineers, are becoming more blurred in the context of 3DP integration. One would need to be more well-rounded in obtaining the knowledge and skill sets relevant to various digital fabrication methods and be able to think holistically in conceptualizing and problem solving in product design.
Impacts on sourcing and manufacturing
A recent industry report suggests that 3DP technology may redefine new patterns for sourcing and manufacturing in the fashion industry (Global apparel manufacturing 2017). The three following potential impacts help explain the technology saturation and ability to complement the current supply chains. First, the most recognized major impact of 3DP integration is the shift to localizing manufacturing, which may become a feasible option for many fashion companies. Recent survey shows that more than 50% of manufacturing executives were at least considering shifting manufacturing back to the United States from overseas (Morris 2015). Retailers in the United States, such as Under Armour, believe the model of localizing manufacturing represents the future with the right amount of innovation and technology and know-how (Mirabella 2016). Through providing low-volume and tailor-made products on-site, technology like 3DP would also help reduce material-supply risks, supply chain network complexity and inventory costs (Laplume et al. 2016). Furthermore, one does not have to be concern with finding large warehouses to store traditional machinery and products, hence reduced fixed capital costs (Sisson and Thompson 2012; Lipson and Kurman 2013).
Second, the apparel manufacturing offshoring approach is essentially factor-cost differentials, particularly for labor arbitrage. Some of the largest exporters for the fashion industry would no longer serve as the cheapest producer in the future. Experts have noted that 3DP technology has the potential to reshape the global fashion supply chain by altering its geographic span and density (Laplume et al. 2016). Since the labor input in 3DP is relatively modest compared to traditional manufacturing, the comparative advantage of Asian countries on wage differentials is diminishing (Jing 2015). Statistics suggest that in developing countries like China, where monthly wages of the 23 million textile workers averages at ¥4000 (RMB), or $650 (US) a month, manufacturers who rely on exports would face financial pressure (Jing 2015) in the localized manufacturing approach. Consequently, the competitive advantage in global specialization would lose significance.
Third, lead time is a critical factor in the fashion industry that affects sourcing strategy. To meet consumer’s changing needs, fashion products are expected to be manufactured and delivered in a much more efficient manner to avoid overproduction and loss of competitive advantage. In this case, lead time becomes even more important than the overall cost. Currently, when raw materials and components that are sourced in India and South Korea, and production is planned to occur in China, one must wait until the arrival of all materials before proceeding to the actual production and assembly phase. In contrast, 3DP may shorten lead times through immediately making products available via on-site manufacturing. Also, 3DP has the capability of eliminating or reducing product assembly processes. Therefore, the amount of intermediate goods would be expected to decrease (Laplume et al. 2016). Coupled with shorter lead times, greater control over inventory, rising demand for high-quality apparel and rising consumer income would further incentivize manufacturers to relocate to the United States.
Impacts on retail, distribution, and consumer
Many scholars and experts have noted how 3DP could be a huge part of the retail industry’s future (Nordmark 2015; Luke 2014). One major phenomenon in the rise of 3DP technology application is the exponential increase in the demand for commercial based 3D printers. Data from 2013 to 2014 alone reveals the 3D printer market has seen a 200% growth in the United States (Tracking the growth 2014) and projected the global 3D printer market is projected to reach $9.6 billion (US) by 2020 (Deacon 2014). In North America, this market is expected to account for 49% of global revenue in 2018 (Deacon 2014). Leading 3D program company Autodesk also foresees half of all households in even developed countries will own commercial 3D printer within a decade (Nordmark 2015). Designer, Danit Peleg was able to produce the first apparel collection using commercial desktop FDM printers (Danit Peleg 2014, 2015). Consequently, this phenomenon reflects the increasing demand in product personalization and customization. Modern consumers truly care more about exclusivity and desirability.
Unlike traditional manufacturing techniques in which many different molds are needed to produce product variety, 3DP is capable of creating such variety without the additional manufacturing costs (Nyman and Sarlin 2014). This also reflects the increasingly influential maker’s movement, in which technology enthusiasts enjoy the hands-on, do-it-yourself (DIY) process in creating one-of-a-kind customization for themselves (Lipson and Kurman 2013). This unique trend has led to the rapid growth of bespoke design in various product markets, such as the niche for 3D printed custom jewelry (e.g., Shapeways). Today, certain consumer generations, such as the millennials, are taking on more influential power in the fashion industry, which has the inclination toward changing the traditional picture in business, economics, and lifestyle. Therefore, fashion retailers need to consider how to employ radically different approaches in retailing (Millsaps 2015). The second key impact in this sector falls in the alternative business models that have quickly surfaced in meeting the increasingly diversified consumer demand. Currently, there are three main approaches for consumers to obtain 3DP products and/or experience product customization.
Consumers can buy finished fashion products directly through retailers or designers that currently market 3DP based or integrated products (e.g., Under Armour Architech footwear). They can also participate in the design process via online, website or mobile APP based, or offline 3DP stores (e.g., Feetz). Alternatively, consumers can make 3DP products using commercial 3D printers directly at home, which is particularly convenient for small product such as fashion accessories. More prominently, online print shops have been taking advantage of this trend in recent years. They are conveniently located for consumers and offers tolerable delivery charges. Shapeways.com hosts a vibrant marketplace for art, jewelry, toys, and mechanical parts among other things that are all manufactured on demand and is a common solution for hobbyists and professionals alike to create customized objects with a reasonable lead time (Shapeways 2017). It essentially adopts the Etsy business concept but features the 3DP capabilities for product customization. Hobbyists are thus allowed the opportunity to market and feature unique products and ideas with a limited startup investment. In the future, more apparel products, such as the N12 bikini by Continuum Fashion, may be sold via such online platforms (N12, n.d.).
Third, to attract the attention of today’s fashion consumers, retailers should also be watching an entire industry pivot and restructure distribution channels under the influence of the 3DP technology. Online, local print stores as well as household consumers will complement to traditional manufacturing/distribution and create the 3D Printing value chain (Laplume et al. 2016). New dynamic flexibility in localized distribution would be needed for future 3D integrated Omni-channel retailing. By producing on-site or near the point of consumption, shipping costs for 3DP based fashion products would be drastically reduced (Lipson and Kurman 2013). Online design repositories and various distribution channels would reshape consumer behavior. At the same time, transportation costs for 3DP based fashion products would reduce drastically, as they would be produced on-site or near the point of consumption (Lipson and Kurman 2013).
Furthermore, in meeting consumers’ needs, the characteristics of quick responsiveness and customization in 3DP technology are expected to be most suitable for the fashion industry. Fast fashion consumers desire products that capture the latest trends, which challenges the fast-fashion system to combine quick response production with enhanced product design capabilities (Cachon and Swinney 2011). Companies such as Zara have a swift or even weekly turnover of their shop collections and thus have a higher demand for short lead time (Hansen 2012). The 3DP technology is thus likely to provide a better solution for meeting the costumer’s growing demands for fashion trends.
Impacts on sustainability optimization
The technology of 3DP has great potential in sustainability optimization from the environmental, economic, and social perspectives. First, the core sustainable advantage and the nature of this production method are embedded in its approach to minimal wastes and the reduced by-products. The two types of 3D printers, selective binding and deposition processes, essentially build objects based on a blueprint from the CAD file, only applying materials where the object requires. Considering the vast potential in the CAD based design process and the related benefits of 3DP integration in the current supply chain, experts expect reduced carbon footprints and an immense percentage of potential inputs such as energy saved (Lipton and Kurman 2013). In 3DP technology, some selective binding printers such as the Selective Laser Sintering (SLS) process use powder-based material that can serve as both building and support material in printing. It allows more than 50% of the material to be recycled with virgin powder for future print jobs. The US Department of Energy has estimated that the 3DP manufacturing method can reduce energy consumption by 50% compared to the traditional subtractive manufacturing approach (We can’t wait 2012). A forecast generated, using an environmental and economic impact model, suggests there can be a global reduction in cost of $170 to $593 billion (US) and 5% in energy and CO2 emissions of industrial manufacturing by 2025 (Gebler et al. 2014).
To advance further in sustainable innovation, a form of Solar Sintering based 3D printer is capable of using solar power to not only run the printer but also to ingeniously uses concentrated sunlight as the printer’s “laser” or heat source to fuse the building material, sand, to form the object (Lipton and Kurman 2013). As the sand melts, the object can be transformed into a strong glass material without added adhesive, and would be able to be ground back into sand (Lipton and Kurman 2013). Such an approach has the potential to achieve the cradle-to-cradle model (Braungar and McDonough 2002), in which products are designed and made in a regenerative way.
Second, from a recycling standpoint, 3DP technology is capable of making a large impact on the way we use and reuse everyday materials and products. Currently, 3DP technology is capable of recycling polyethylene-based material, such as the content found in milk jugs, into 3D printer ready filament (Lipton and Kurman 2013). Typically, only 10% of all plastics we use are recycled due to the high cost of machining plastic and the potential for contaminations in the process (Hakkens, n.d.). Furthermore, plastics such as PLA and ABS can be recycled into filaments for the 3DP process like FDM (fused deposition modeling) using low temperatures. Various start-up companies are also actively sourcing and developing “valuable” plastics using methods of extrusion, rotation, oven heating, and injection (Hakkens, n.d.). Experts believe that soon people will be able to recycle their own household plastic into material suitable for a desktop personal 3D printer (Lipton and Kurman 2013) using centralized and home-based recycling systems (Kreiger et al. 2014). The potential impact of such a process would conserve 100 million MJ of energy per annum and significantly reduce greenhouse gas emission (Kreiger et al. 2014). Technology is even now available for recycling 3D printed products on a commercial scale using the 3D-Reprint concept (Krassenstein 2014). At the convenience of home, consumers are thus able to purchase desktop recycling machine to generate 3DP material, commonly in plastic filament form, from existing 3D printed based or plastic based product to use in future new print jobs (e.g., Precious Plastic, 3D Brooklyn).
Consequently, the nature of various 3DP processes may inevitably lead to the development of a new recycling system for both fashion and non-fashion products. At the same time, related 3DP and recycling support business opportunities would take a role in the scheme of recycling. Today, companies like the ProtoPrint enterprise of India are already following a new business model through focusing on social sustainability efforts. Its main mission is to offer job opportunities to the impoverished members of society through recruiting local waste pickers who will be able to earn 15% more than their typical income (Molitch-hou 2014).