ASTM D5034-09. (2013). Standard test method for breaking strength and elongation of textile fabrics (Grab Test). West Conshohocken, PA: ASTM International, 2013. www.astm.org.
Barauskas, R., & Abraitiene, A. (2007). Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA. International Journal of Impact Engineering,
34(7), 1286–1305.
Article
Google Scholar
Bazhenov, S. (1997). Dissipation of energy by bullet proof aramid fabric. Journal of Material Science,
32(15), 4167–4173.
Article
CAS
Google Scholar
Billon, H. H., & Robinson, D. J. (2001). Models for the ballistic impact of fabric armor. International Journal of Impact Engineering,
25(4), 411–422.
Article
Google Scholar
Briscoe, B. J., & Motamedi, F. (1992). The ballistic impact characteristics of aramid fabrics the influence of interfacial friction. Wear,
158(1–2), 229–247.
Article
Google Scholar
Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite Structure,
61(1–2), 161–173.
Article
Google Scholar
Cunniff, P. M. (1992). An analysis of the system effects in woven fabrics under ballistic impact. Textile Research Journal,
62(9), 495–509.
Article
CAS
Google Scholar
Duana, Y., Keefe, M., & Bogetti, T. A. (2006a). A numerical investigation of influence of friction on energy absorption by high strength fabric subjected to ballistic impact. International Journal of Impact Engineering,
32, 1299–1312.
Article
Google Scholar
Duana, Y., Keefe, M., Bogetti, T. A., & Cheeseman, B. A. (2005). Modeling friction effects on Ballistic impact behavior of a single ply high strength fabric. International Journal of Impact Engineering,
31(8), 996–1012.
Article
Google Scholar
Duana, Y., Keefe, M., Bogetti, T. A., Cheeseman, B. A., & Powers, B. (2006b). A numerical investigation of friction effect on the energy absorption of a high strength fabric subjected to ballistic impact. International Journal of Impact Engineering,
32(8), 1299–1312.
Article
Google Scholar
Field, J. E., & Sun, Q. (1990). A high speed photographic study of impact on fibers and woven fabrics. In Proceedings of 19th international congress on high speed photography and photonic (pp. 703–712).
ISO 179-1:2000. (2000). Plastics—Determination of Charpy impact properties—Part 1: non-instrumented impact test. International Organization for Standardization
Lim, C. T., Shim, V. P. W., & Ng, Y. H. (2003). Finite-element modelling of the ballistic impact of fabric armor. International Journal of Impact Engineering,
28(1), 13–31.
Article
Google Scholar
Mamivand, M., & Liaghat, G. H. (2010). A model for ballistic impact on multilayer fabric targets. International Journal of Impact Engineering,
37(7), 1056–1071.
Article
Google Scholar
Nilakantan, G., Keefe, M., Bogetti, T. A., & Gillespie, J. W. (2010). Multiscale modeling of the impact of textile fabric based on hybrid element analysis. International Journal of Impact Engineering,
37(10), 1056–1071.
Article
Google Scholar
Nilakantan, G., Keefe, M., & Wetzel, E. D. (2011). Computational modeling of the probabilistic impact response of flexible fabrics. Composite Structure,
93, 3163–3170.
Article
Google Scholar
Novotny, W. R., Cepus, E., Shahkarami, A., Vaziri, R., & Poursartip, A. (2007). Numerical investigation of the ballistic efficiency of multi ply fabric armors during the early stage of impact. International Journal of Impact Engineering,
34(1), 71–88.
Article
Google Scholar
Parga-Landa, B., & Hernandez-Olivares, F. (1995). An analytical model to predict impact behavior of soft armors. International Journal of Impact Engineering,
16(3), 455–466.
Article
Google Scholar
Roylance, D. (1977). Ballistics of transversely impacted fibers. Textile Research Journal,
47(10), 679–684.
Google Scholar
Shim, V. P. W., Tan, V. B. C., & Tay, T. E. (1995). Modelling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering,
16(4), 585–600.
Article
Google Scholar
Shocky, D. A., Erlich, D. C., & Simons, J. W. (2011). Improved barriers to turbine engine fragments. US Department of Transportation Federal Aviation Administration. DOT/FAA/AR-99/8 III.
Starratt, D., Sanders, T., Cepus, E., & Poursartip, A. (2000). An efficient method for continuous measurement of projectile motion in ballistic impact experiments. International Journal of Impact Engineering,
24(2), 155–170.
Article
Google Scholar
Tan, V. B. C., & Ching, T. W. (2006). Computational simulation of fabric armor subjected to ballistic impacts. International Journal of Impact Engineering,
32(11), 1737–1751.
Article
Google Scholar
Tan, V. B. C., Lim, C. T., & Cheong, Ch. (2003). Perforation of high strength fabric by projectiles of different geometry. International Journal of Impact Engineering,
28(2), 207–222.
Article
Google Scholar
Tan, V. B. C., Shim, V. P. W., & Zeng, X. (2005). Modelling crimp in woven fabrics subjected to ballistic impact. International Journal of Impact Engineering,
32(1–4), 561–574.
Article
Google Scholar
Wilde, A. F. (1974). Photographic investigation of high speed missile impact upon nylon fabric. Part II: Retarding force on missile and transverse critical velocity. Textile Research Journal,
44(10), 772–778.
Article
Google Scholar
Wilde, A. F., Roylance, D. K., & Rogers, J. M. (1973). Photographic investigation of high speed missile impact upon nylon fabric. Part I: Energy absorption and cone radial velocity in fabric. Textile Research Journal,
43(12), 753–761.
Article
Google Scholar
Zheng, D., Binienda, W. K., Cheng, J., & Staniszewski, M. (2006). Numerical modeling of friction effects on the ballistic impact response of single ply tri-axial braided fabric. In 9th international LS-DYNA users conference. Michigan. USA. 4–6 Jun 2006.