Anghileri, L. J., & Robert, J. (2019). Hyperthermia in cancer treatment. Boca Raton: CRC Press.
Book
Google Scholar
Arce-Salinas, C., de la Garza-Salazar, J. G., & Meneses García, A. (2013). Inflammatory breast cancer. Berlin: Springer.
Book
Google Scholar
Bal, K., & Kothari, V. K. (2010). Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture. IEEE Transactions on Dielectrics and Electrical Insulation, 17(3), 881–889. https://doi.org/10.1109/TDEI.2010.5492262.
Article
CAS
Google Scholar
Balanis, C. A. (2012). Advanced engineering electromagnetics (2nd ed.). New York: Wiley.
Google Scholar
Balanis, C. A. (2016). Antenna theory: Analysis and design (4th ed.). New York: Wiley.
Google Scholar
Bellon, J. R., Wong, J. S., MacDonald, S. M., & Ho, A. Y. (2016). Radiation therapy techniques and treatment planning for breast cancer. Berlin: Springer.
Book
Google Scholar
Bharambe, V. T. (2016). Analysis of liquid metal vacuum filling approach to develop 3D printed antenna [Unpublished master's thesis]. North Carolina State University.
Bjorgaard, J., Hoyack, M., Huber, E., Mirzaee, M., Chang, Y.-H., & Noghanian, S. (2018). Design and fabrication of antennas using 3D printing. Progress in Electromagnetics Research C, 84, 119–134. https://doi.org/10.2528/PIERC18011013.
Article
Google Scholar
Curto, S., & Prakash, P. (2015). Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system. International Journal of Hyperthermia, 31(7), 726–736. https://doi.org/10.3109/02656736.2015.1063170.
Article
PubMed
Google Scholar
Curto, S., Ramasamy, M., Suh, M., & Prakash, P. (2015). Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system. Energy-Based Treatment of Tissue and Assessment VIII, 9326, 93260I. https://doi.org/10.1117/12.2079718.
Article
Google Scholar
Curto, S., Garcia-Miquel, A., Suh, M., Vidal, N., Lopez-Villegas, J. M., & Prakash, P. (2018). Design and characterisation of a phased antenna array for intact breast hyperthermia. International Journal of Hyperthermia, 34(3), 250–260. https://doi.org/10.1080/02656736.2017.1337935.
Article
PubMed
Google Scholar
Griffiths, H., Ahmed, A., Smith, C. W., Moore, J. L., Kerby, I. J., & Davies, R. M. E. (1986). Specific absorption rate and tissue temperature in local hyperthermia. International Journal of Radiation Oncology Biology Physics, 12(11), 1997–2002. https://doi.org/10.1016/0360-3016(86)90137-9.
Article
CAS
Google Scholar
Halac, S., Roemer, R. B., Oleson, J. R., & Cetas, T. C. (1983). Uniform regional heating of the lower trunk: Numerical evaluation of tumor temperature distributions. International Journal of Radiation Oncology Biology Physics, 9(12), 1833–1840. https://doi.org/10.1016/0360-3016(83)90351-6.
Article
CAS
Google Scholar
Ito, K., Furuya, K., Okano, Y., & Hamada, L. (2001). Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electronics and Communications in Japan Part I Communications, 84(4), 67–77. https://doi.org/10.1002/1520-6424(200104)84:4%3c67::AID-ECJA8%3e3.0.CO;2-D.
Article
Google Scholar
Li, S. (2019). 3D-printed conformal antennas for wearable hyperthermia device [Unpublisehd master’s thesis]. North Carolina State University.
Liang, M., Wu, J., Yu, X., & Xin, H. (2016). 3D printing technology for RF and THz antennas. 2016 international symposium on antennas and propagation (ISAP), Japan, 536-537. https://ieeexplore.ieee.org/document/7821190
Locher, I., Klemm, M., Kirstein, T., & Trster, G. (2006). Design and characterization of purely textile patch antennas. IEEE Transactions on Advanced Packaging, 29(4), 777–788. https://doi.org/10.1109/TADVP.2006.884780.
Article
Google Scholar
Mirzaee, M., Noghanian, S., Wiest, L., & Chang, I. (2015). Developing flexible 3D printed antenna using conductive ABS materials. 2015 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting, Canada, 1308–1309. https://doi.org/10.1109/APS.2015.7305043
Mukai, Y. (2016). Inkjet-printed wearable antennas for hyperthermia treatment [Unpublished master’s thesis]. North Carolina State University.
Mukai, Y. (2019). Dielectric properties of cotton fabrics and their applications [Unpublished doctoral dissertation]. North Carolina State University.
Mukai, Y., Bharambe, V. T., Adams, J. J., & Suh, M. (2018). Effect of bending and padding on the electromagnetic performance of a laser-cut fabric patch antenna. Textile Research Journal, 89(14), 2789–2801. https://doi.org/10.1177/0040517518801202.
Article
CAS
Google Scholar
Mukai, Y., Dickey, E. C., & Suh, M. (2020). Low frequency dielectric properties related to structure of cotton fabrics. IEEE Transactions on Dielectrics and Electrical Insulation, 27(1), 291–298. https://doi.org/10.1109/TDEI.2019.008511.
Article
Google Scholar
Mukai, Y., & Suh, M. (2018). Development of a conformal textile antenna for thermotherapy. Fiber society’s fall 2018 technical meeting and conference, USA. https://www.thefibersociety.org/Portals/0/Past%20Conferences/2018_Fall_Abstracts.pdf?ver=2019-01-22-095426-997
Mukai, Y., & Suh, M. (2019a). Structure-microwave dielectric property relationship in cotton fabrics. Techtextil North America, USA.
Mukai, Y., & Suh, M. (2019b). Conformal cotton antenna for wearable thermotherapy. Fiber Society’s Spring 2019 Conference, Hong Kong. http://thefibersociety.org/Portals/0/Past%20Conferences/2019_Spring_Abstracts.pdf?ver=2019-07-16-122240-037
Mukai, Y., & Suh, M. (2020). Development of a conformal polyester fabric antenna for wearable breast hyperthermia. Fashion & Textiles, 6, 062001.
Google Scholar
Noorani, R. (2017). 3D printing: Technology, applications, and selection. Boca Raton: CRC Press. https://doi.org/10.1201/9781315155494.
Book
Google Scholar
Oleson, J. R., Heusinkveld, R. S., & Manning, M. R. (1983). Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes. International Journal of Radiation Oncology Biology Physics, 9(4), 549–556. https://doi.org/10.1016/0360-3016(83)90074-3.
Article
CAS
Google Scholar
Pang, L., & Lee, K. (2016). Hyperthermia in oncology. Boca Raton: CRC Press.
Google Scholar
Peng, S., Zeng, Q., Yang, X., Hu, J., Qiu, X., & He, J. (2016). Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics. Scientific Reports, 6, 38978. https://doi.org/10.1038/srep38978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramasamy, M., Curto, S., Prakash, P., & Suh, M. (2015). Conformable antenna development for wearable hyperthermia device. The fiber society 2015 fall meeting and technical conference, USA. http://thefibersociety.org/Portals/0/Past%20Conferences/2015_Fall_Abstracts.pdf
Stauffer, P. R. (2000). Thermal therapy techniques for skin and superficial tissue disease. Matching the energy source to the clinical need: a critical review, USA,102970, 102970E. https://doi.org/10.1117/12.375215
Tuncer, E., Serdyuk, Y. V., & Gubanski, S. M. (2002). Dielectric mixtures: Electrical properties and modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 9(5), 809–828. https://doi.org/10.1109/TDEI.2002.1038664.
Article
Google Scholar
Xu, F., Zhang, K., & Qiu, Y. (2020). Light-weight, high-gain three-dimensional textile structural composite antenna. Composites Part B: Engineering, 185, 107781. https://doi.org/10.1016/j.compositesb.2020.107781.
Article
Google Scholar
Zajicek, R., & Vrba, J. (2010). Broadband complex permittivity determination for biomedical applications. In V. Zhurbenko (Ed.), Advanced microwave circuits and systems (pp. 365–386). IntechOpen: Rijeka.
Google Scholar